Bone Tissue

Bone Tissue Function
- Support: for soft tissues and body with attachments for muscles
- Protection: armor over internal organs
- Movement: leverage and points on which muscles can act
- Mineral homeostasis: calcium and phosphorus stored in bone act as source for other cells
- Blood cell production: in red marrow
- Energy storage: triglycerides in yellow marrow

General Structure
- Diaphysis
- Epiphyses
- Metaphyses & epiphyseal plate (bone growth)
- Articular cartilage - hyaline
- Periosteum - dense irregular connective tissue, for bone growth & repair
- Medullary cavity
- Endosteum - bone growth

Histology of Bone
- Mature tissue consists of widely separated cells in matrix (25% water, 25% protein fibers, 50% mineral salts)
- Four cell types
 - Osteoprogenitor/osteogenic cells: mitotic precursor cells in periosteum and endosteum
 - Osteoblasts: secrete collagen and create matrix
 - Osteocytes: osteoblasts that are isolated by matrix, maintain matrix
 - Osteoclasts: break down matrix

More Histology
- Minerals salts primarily hydroxyapatite ($\text{Ca}_3(\text{PO}_4)_2\cdot(\text{OH})_2$) & some calcium carbonate
- Crystalization of salts in collagen fibers called calcification or mineralization
- Salts give bone its hardness, collagen its flexibility, together its tensile strength
- Distribution of space between hard components determines type...compact or spongy

Compact Bone
- At least a thin layer covers spongy bone, but primary type in diaphysis
- Supports body weight and resists stress
- Organized into Haversian systems (osteons) with interstitial lamellae between
 - Outer and inner circumferential lamellae
Parts include Haversian (central) canal, perforating canals (both for blood vessels & nerves), lacunae (for osteocytes), and canaliculi (for exchange of nutrients and wastes)
 – Orientation related to bone stress

Spongy Bone
- Most of the structure of short, flat, irregular bones and epiphyses of long bones
- Provides marrow storage and some support
- Irregular arrangement of lamellae forming latticework of trabeculae
 – Orientation related to stress
- Intermixed with red marrow
- Nutrient and waste exchange direct into marrow from canaliculi

Blood Supply
- Major vessel enters as nutrient artery through nutrient foramen, send branches to Haversian system, and ends in medullae
 – Some bones have more than one e.g. femur
- Periosteal arteries return to outside of bone (periosteum)
- Metaphseal artery
- Epiphyseal artery - vessels that enter proximal and distal ends
- Nerves follow similar path

Bone Formation
- Ossification or osteogenesis
- Mesenchymal cells → osteoprogenitors → osteoclasts and osteoblasts
- Two types of ossification (osteogenesis)
 – Intramembranous: → osteoblast in fibrous tissue
 – Endochondral: → chondroblast → chondrocyte → then osteoblast in cartilage

Intramembranous
- Typical of portions of skull, mandible, and clavicle
- Osteoblasts secrete matrix themselves becoming osteocytes
- Osteocytes deposit mineral salts (calcification)
- Trabeculae structure similar to spongy bone, spaces vascularized, ultimately becoming marrow
- Periosteum layer forms which reorganizes surface to compact bone

Endochondral
- Formation of most long bones
- Development of hyaline cartilage “model” through
 – Interstitial growth: internal chondrocytes dividing and producing more cartilage
 – Apositional growth: peripheral chondroblasts from perichondrium add cartilage
– Internal chondrocytes hypertrophy & burst, changing pH and causing calcification; they die due to lack of nutrients, leaving lacunae

More Endochondral

– Penetration by nutrient artery, osteoprogenitors now form osteoblasts in previous perichondrium, forming periosteal bone collar

• Formation of primary ossification center
 – Periosteal bud (osteoblasts, clasts and marrow cells) grow inward due to vascularization, spongy bone replaces calcified cartilage, medullary cavity formed by osteoclasts, outer region reformed into compact bone

Even More Endochondral

• Formation of secondary ossification center
 – Entrance of epiphyseal arteries begins process
 – Cartilage replacement similar to primary, but some cartilage remains as articular cartilage and epiphyseal plate, no cavity forms, and change is outward

Bone Growth

• Length growth occurs at epiphyseal plate where cartilage continues to grow
 – Four zones: resting, proliferating, hypertrophic and calcified

• Appositional growth occurs under the periosteum forming new osteons around periosteal vessels

More Bone Growth

• Growth controlled by hormones
 – Insulin-like growth factors (IGFs) from bone/liver promote cell division and protein synthesis
 – Human growth hormone (hGH) (ant. pituitary) regulates IGF production
 – Thyroid hormones and a variety of nutrients needed
 • Ca, P, F, Mg, Fe, Mn
 • Vitamins C,K, B₁₂ for protein syn., A for osteoblast activity
 – At puberty, sex hormones (estrogen/androgen) affect growth spurt and skeletal modifications
 • Estrogen ultimately closes epiphyseal plate

Remodeling

• Process of adding/altering bone structure under mechanical stress, replacing worn or injured bone, or during normal growth
 – Distal portion of femur every 4 months

• Osteoclasts tear down by secreting a protein-digesting enzyme and acid to lower regional pH, and by phagocytizing remnants

• Osteoblasts rebuild

Bone Repair

• Formation of clot (fracture hematoma), absence of blood causes cell death, inflammation

• Fibroblasts responsible for production of granulation tissue (procallus)
• Chondroblasts form fibrocartilaginous callus
• As vascularization occurs, osteoblasts form bony callus of spongy bone
• Remodeling

Source of Calcium

• Bone stores 99% of body’s calcium
• Fundamentally important to muscle contraction, nerve function, blood clotting and as enzyme co-factor
• Control of calcium blood levels
 – Too low: release of parathyroid hormone (PTH)
 – Too high: release of calcitonin (CT) from thyroid

Osteoporosis

• Decrease in bone mass
• Decline in sex hormones reduces osteoblast activity
• Cause shrinkage of backbone, height loss, hunched backs, and fractures
• Exercise and diet are important preventive measures
• For post-menopausal women, estrogen replacement therapy or alternative, calcium supplements, and weight-bearing exercise