Useful Resources

Website: www.r-phylo.org

Listserve: r-sig-phylo@r-project.org

Paradis (2006) Analysis of phylogenetics and evolution with R. Springer (Use R! series)

NESCent

Ancestral State Reconstruction or Ancestral State Estimation

Infer how traits have changed through time

Infer how traits have changed through time

Visualize/identify complex macroevolutionary/macroecological patterns

Evolution of Size in Whales

- Reconstruction methods
 - Squared-change parsimony
 - Weighted or unweighted
 - Maximum likelihood
 - Generalized least squares (GLS)
 - Bayesian

- Reconstruction methods
 - Squared-change parsimony
 - Maximum likelihood
 - GLS
 - Bayesian

Ape package ace function

- Reconstruction methods
 - Squared-change parsimony
 - Maximum likelihood

Caveat this method is unstable and can generate unusual error messages. Use at your own risk!

Squared-change parsimony

- Minimizes evolutionary change across the tree
- Unweighted ignores branch length information
- Weighted incorporates branch length information

Maximum likelihood

- Most likely set of ancestral states when whole phylogeny is considered
- Incorporates branch length information
- Evolutionary model to estimate rate of evolution (Brownian motion currently implemented in R)

Evolution of Size in Whales

Discrete traits in

 Maximum likelihood used to fit Markovian models of discrete character evolution.

ace(type=discrete)

Discrete traits in

 Maximum likelihood used to fit Markovian models of discrete character evolution. ace(type=discrete)

Equal			Symmetrical				al	All-rates different					
Charac states	ter 1	2	3		1	2	3			1	2	3	
1	0	1	1	 1	0	1	2		1	0	1	2	
2	1	0	1	2	1	0	3		2	3	0	4	
3	1	1	0	3	2	3	0		3	5	6	0	

Discrete traits in (

 Maximum likelihood used to fit Markovian models of discrete character evolution.

Equal

Symmetrical

All-rates different

Character						
states	1	2	3			
1	0	1	1			
2	1	0	1			
3	1	1	0			

		2	3	
1	0	1	2	
2 3	1	0	3	
3	2	3	0	

	_	2		
1	0	1	2	
2	0 3 5	0	4	
3	5	6	0	

ace(type=discrete, model="ER")

ace(type=discrete, model="SYM")

ace(type=discrete,
model=ARD")

Measure of morphological diversity

Evolution of diversity --> species richness --> morphological richness

- Are taxonomically rich clades also morphologically diverse?
- How does morphological diversity relate to ecological differences?

Measure of morphological diversity

Sample-size independent

Average pair-wise distance between points in

morphospace

Measure of morphological diversity

- Sample-size independent
- Geiger package
 - Average-squared Euclidean distance, if all axes are in the same units.
 - Average-Manhattan distance (sum of the absolute differences of their coordinates)

Harmon et al. 2003, Science 301: 961-964

Geiger package

- 1. Disparity across the whole tree (compare to other clades).
- Average pair-wise distance in morphospace between all species in the dataset

Geiger package

- 1. Disparity across the whole tree (compare to other clades).
- 2. Disparity for every clade in the phylogeny
- Average pair-wise distance in morphospace between all species in the clade

Geiger package

- 1. Disparity across the whole tree (compare to other clades).
- 2. Disparity for every clade in the phylogeny
- Average pair-wise distance in morphospace between all species in the clade

Geiger package

- 1. Disparity across the whole tree (compare to other clades).
- 2. Disparity for every clade in the phylogeny
- 3. Disparity through time

Does disparity correspond to clade differences?

Geiger package

- 1. Disparity across the whole tree (compare to other clades).
- Disparity for every clade in the phylogeny

3. Disparity through time

- Relative disparity for each node (disparity for clade/whole tree disparity)
- Calculate at each divergence event average relative disparity for each sub-clade present at that time period.

3. Disparity through time

- Relative disparity for each node
 (disparity for node/whole tree disparity)
- Calculate at each divergence event average relative disparity for each sub-clade present at that time period.

3. Disparity through time plots

3. Disparity through time

High average disparity through time = variation within sub-clades

Decreasing average disparity through time = variation between sub-clades

3. Disparity through time

Morphological convergence.
Sub-clades overlap each
other in morphospace

No morphological convergence - sub-clades occupy different morphospaces

3. Disparity through time

Null expectation (morphological datasets simulated on the phylogeny)

3. Disparity through time - Iguanian lizards

