Proof Again we apply Markov's inequality (C.30), \(\Pr \{ X \geq t \} \leq \frac{\mathbb{E}[X]}{t} \), this time to inequality (11.7), with \(X = \sum_{j=0}^{m-1} m_j \) and \(t = 4n \):

\[
\Pr \left\{ \sum_{j=0}^{m-1} m_j \geq 4n \right\} \leq \frac{\mathbb{E} \left[\sum_{j=0}^{m-1} m_j \right]}{4n} \\
< \frac{2n}{4n} \\
= \frac{1}{2}. \]

From Corollary 11.12, we see that if we test a few randomly chosen hash functions from the universal family, we will quickly find one that uses a reasonable amount of storage.

Exercises

11.5-1 *
Suppose that we insert \(n \) keys into a hash table of size \(m \) using open addressing and uniform hashing. Let \(p(n,m) \) be the probability that no collisions occur. Show that \(p(n,m) \leq e^{-n(n-1)/2m} \). (Hint: See equation (3.12).) Argue that when \(n \) exceeds \(\sqrt{m} \), the probability of avoiding collisions goes rapidly to zero.

Problems

11.1 Longest-probe bound for hashing
Suppose that we use an open-addressed hash table of size \(m \) to store \(n \leq m/2 \) items.

a. Assuming uniform hashing, show that for \(i = 1, \ldots, n \), the probability is at most \(2^{-k} \) that the \(i \)th insertion requires strictly more than \(k \) probes.

b. Show that for \(i = 1, \ldots, n \), the probability is \(\Theta(1/n^2) \) that the \(i \)th insertion requires more than \(2 \log n \) probes.

Let the random variable \(X_i \) denote the number of probes required by the \(i \)th insertion. You have shown in part (b) that \(\Pr \{ X_i > 2 \log n \} = O(1/n^2) \). Let the random variable \(X = \max_{1 \leq i \leq n} X_i \) denote the maximum number of probes required by any of the \(n \) insertions.

c. Show that \(\Pr \{ X > 2 \log n \} = O(1/n) \).

d. Show that the expected length \(\mathbb{E}[X] \) of the longest probe sequence is \(O(\log n) \).
Chapter 11 Hash Tables

11-4 Hashing and authentication

Let \(\mathcal{H} \) be a class of hash functions in which each hash function \(h \in \mathcal{H} \) maps the universe \(U \) of keys to \(\{0, 1, \ldots, m-1\} \). We say that \(\mathcal{H} \) is \(k \)-universal if, for every fixed sequence of \(k \) distinct keys \(\{x^{(1)}, x^{(2)}, \ldots, x^{(k)}\} \) and for any \(h \) chosen at random from \(\mathcal{H} \), the sequence \(\{h(x^{(1)}), h(x^{(2)}), \ldots, h(x^{(k)})\} \) is equally likely to be any of the \(m^k \) sequences of length \(k \) with elements drawn from \(\{0, 1, \ldots, m-1\} \).

\(a. \) Show that if the family \(\mathcal{H} \) of hash functions is 2-universal, then it is universal.

\(b. \) Suppose that the universe \(U \) is the set of \(n \)-tuples of values drawn from \(\mathbb{Z}_p = \{0, 1, \ldots, p-1\} \), where \(p \) is prime. Consider an element \(x = (x_0, x_1, \ldots, x_{n-1}) \in U \). For any \(n \)-tuple \(a = (a_0, a_1, \ldots, a_{n-1}) \in U \), define the hash function \(h_a \) by

\[
h_a(x) = \left(\sum_{j=0}^{n-1} a_j x_j \right) \mod p.
\]

Let \(\mathcal{H} = \{h_a\} \). Show that \(\mathcal{H} \) is universal, but not 2-universal. (Hint: Find a key for which all hash functions in \(\mathcal{H} \) produce the same value.)

\(c. \) Suppose that we modify \(\mathcal{H} \) slightly from part (b): for any \(a \in U \) and for any \(b \in \mathbb{Z}_p \), define

\[
h'_{ab}(x) = \left(\sum_{j=0}^{n-1} a_j x_j + b \right) \mod p
\]

and \(\mathcal{H}' = \{h'_{ab}\} \). Argue that \(\mathcal{H}' \) is 2-universal. (Hint: Consider fixed \(n \)-tuples \(x \in U \) and \(y \in U \), with \(x_i \neq y_i \) for some \(i \). What happens to \(h'_{ab}(x) \) and \(h'_{ab}(y) \) as \(a_i \) and \(b \) range over \(\mathbb{Z}_p \)?)

\(d. \) Suppose that Alice and Bob secretly agree on a hash function \(h \) from a 2-universal family \(\mathcal{H} \) of hash functions. Each \(h \in \mathcal{H} \) maps from a universe of keys \(U \) to \(\mathbb{Z}_p \), where \(p \) is prime. Later, Alice sends a message \(m \) to Bob over the Internet, where \(m \in U \). She authenticates this message to Bob by also sending an authentication tag \(t = h(m) \), and Bob checks that the pair \((m, t)\) he receives indeed satisfies \(t = h(m) \). Suppose that an adversary intercepts \((m, t)\) en route and tries to fool Bob by replacing the pair \((m, t)\) with a different pair \((m', t')\). Argue that the probability that the adversary succeeds in fooling Bob into accepting \((m', t')\) is at most \(1/p \), no matter how much computing power the adversary has, and even if the adversary knows the family \(\mathcal{H} \) of hash functions used.