A **Binomial tree** B_k of degree k is defined recursively as follows.

$$B_0 = \emptyset$$

$$B_k = B_{k-1} \cup B_k$$

Note that the order of the child nodes are significant.

Properties of a Binomial Tree

1. B_k has 2^k nodes.
2. B_k has height k.
3. B_k has $\binom{k}{i}$ at depth $i = 0, \ldots, k$.
4. Root of B_k has degree k which is maximum over all nodes.
5. The subtree rooted at the i-th child of the root of B_k is a binomial tree B_i.

\Rightarrow Maximum degree in an n-node binomial tree is $\lg n$.

A Binomial Heap is a set of binomial trees such that

1. each binomial tree is heap-ordered,
2. there is at most one B_k for a given k.

\Rightarrow The binomial heap for n items contains one binomial tree for each 1-bit in the binary representation of n. If the i-th bit is set, then the corresponding binomial tree is B_i, where the least significant bit occurs at $i = 0$.

Example. The binomial heap for 13 items (binary 1101) is shown below.

The root nodes of all the binomial trees in the binomial heap are chained together in a doubly-linked circular list called the *root list*. The children of each node are also chained together in a doubly-linked circular list to facilitate merging.

Operation

- **Minimum(H)** Iterate through the root list to find the minimum root. Root list has at most $\lg n$ nodes.
- **Union(H_1, H_2)** Merge the two root list in order of root degrees. Iterate through merged root list and merge the binomial trees analogous to binary addition. Merging two binomial trees take $O(1)$ time. There are $O(\lg n_1 + \lg n_2) = O(\lg(n_1 + n_2))$ trees to merge.
- **Insert(H, x)** Make x a single node binomial heap and union with H.
- **ExtractMin(H)** Find Minimum(H), remove minimum root, make its children into a new binomial heap, and union with H.
- **DecreaseKey(H, x, k)** Update $x.key$ to k, and bubble x up to maintain heap order.
- **Delete(H, x)** Decrease key of x to $-\infty$, and extract minimum.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Binary Heaps</th>
<th>Binomial Heaps</th>
<th>Fibonacci Heaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert</td>
<td>$O(\lg n)$</td>
<td>$O(\lg n), O(1)^A$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Minimum</td>
<td>$O(1)$</td>
<td>$O(\lg n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>ExtractMin</td>
<td>$O(\lg n)$</td>
<td>$O(\lg n)$</td>
<td>$O(\lg n)^A$</td>
</tr>
<tr>
<td>Delete</td>
<td>$O(\lg n)$</td>
<td>$O(\lg n)$</td>
<td>$O(\lg n)^A$</td>
</tr>
<tr>
<td>DecreaseKey</td>
<td>$O(\lg n)$</td>
<td>$O(\lg n)$</td>
<td>$O(1)^A$</td>
</tr>
<tr>
<td>Union</td>
<td>$O(n)$</td>
<td>$O(\lg n), O(1)^A$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>