ICS 421 Spring 2010
Database Design

Asst. Prof. Lipyeow Lim
Information & Computer Science Department
University of Hawaii at Manoa
Data, Models, Schemas, Databases

- **Data** are known facts that can be recorded and that have implicit meaning.

- A **data model** is a collection of concepts for describing data.

- A **schema** is a description of a particular collection of data, using the a given data model.

- The **relational model of data** is the most widely used model today.
 - Main concept: *relation*, basically a table with rows and columns.
 - Every relation has a *schema*, which describes the columns, or fields.

- A **database**: a collection of related data.
 - Represents some aspect of the real world (aka universe of discourse).
 - Logically coherent collection of data
DBMS

• A **database management system (DBMS)** is a collection of programs that enables users to create and maintain a database
• And provides
 – **Data Independence**: applications insulated from how data is structured and stored
 • **Logical data independence**: Protection from changes in logical structure of data.
 • **Physical data independence**: Protection from changes in physical structure of data.
 – **Concurrency control**: supports multiple users
 – **Transactions**: **Atomicity Consistency Isolation Durability** (ACID) properties
Database Design & Deployment

Requirements Analysis

Conceptual Database Design

Logical Database Design

Physical Database Design (DDL/DML)

Business Processes

SQL Operations & program code

Testing

Production

iterate
Overview Database Design

• Conceptual Design
 – Use *entity-relationship* (aka ER) model represented pictorially as ER diagrams
 – Map ER model to relational schema

• Questions to ask yourself
 – What are the *entities* and *relationships* in the application?
 – What information about these entities and relationships should we store in the database?
 – What are the integrity constraints or business rules that hold?
ER Model Basics: Entities

- **Entity**: Real-world object distinguishable from other objects. An entity is described (in DB) using a set of *attributes*.

- **Entity Set**: A collection of similar entities. E.g., all employees.

 - All entities in an entity set have the same set of attributes. (Until we consider ISA hierarchies, anyway!)
 - Each entity set has a *key*.
 - Each attribute has a *domain*.
ER Model Basics: Relationships

- **Relationship**: Association among two or more entities.

- **Relationship Set**: Collection of similar relationships.
 - An n-ary relationship set R relates n entity sets $E_1 \ldots E_n$; each relationship in R involves entities $e_1 \in E_1, \ldots, e_n \in E_n$.
 - Same entity set could participate in different relationship sets, or in different “roles” in same set.
Cardinality Ratios of Relationships

- Consider binary relationships, i.e., between two entity sets
- Alternate notation: 1:1, 1:M, M:1, M:N

![Diagram showing cardinality ratios: 1-to-1, 1-to-Many, Many-to-1, Many-to-Many]
Key Constraints

- Consider Works_In: An employee can work in many depts; a dept can have many employees: m-to-m
- Consider Manages: each dept has at most one manager
- Dept has a **key constraint** on Manages: each instance of dept appears in at most one instance of manages
- Denoted by an arrow: given a dept entity we can uniquely identify the manages relationship in which it appears
Participation constraints

- Does every dept have a manager?
- If so, this is a **participation constraint**: the participation of dept in Manages is said to be total (vs. partial). Denoted by thick/double line
- Meaning that every Dept entity must appear in an instance of the Manages relationship
• **Partial Participiation**: Not all members of the Employees entity set take part in the manages relations
• **Total Participation**: All members of the Dept entity set take part in the manages relationship
• Dept has a **key constraint** on Manages: each member of the dept entity set takes part in at most one member of the manages relationship set
Weak Entities

- A **weak entity** can be identified uniquely only by considering the primary key of another (owner) entity.
- Owner entity set and weak entity set must participate in a one-to-many relationship set (one owner, many weak entities).
- Weak entity set must have total participation in this *identifying* relationship set.
- Denoted by a box with double or thick lines.
Design Choices

- Should a concept be modeled as an entity or an attribute?
- Should a concept be modeled as an entity or a relationship?
- Identifying relationships: Binary or ternary? Aggregation?
- How much semantics to capture in the form of constraints?
Entity vs. Attribute

- Depends upon how we want to use the address information, and the semantics of the data:
 - If we have several addresses per employee, *address* must be an entity (since attributes cannot be set-valued).
 - If the structure (city, street, etc.) is important, e.g., we want to retrieve employees in a given city, *address* must be modeled as an entity (since attribute values are atomic).