ICS 321 Data Storage & Retrieval

Normal Forms (ii)

Prof. Lipyeow Lim
Information & Computer Science Department
University of Hawaii at Manoa
Redundancies & Decompositions

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Lot</th>
<th>Rating</th>
<th>Hourly_wages</th>
<th>Hours_worked</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-2366</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Lot</th>
<th>Rating</th>
<th>Hourly_wages</th>
<th>Hours_worked</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-2366</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>
Lossless-join Decomposition

• Decomposition of R into X and Y is \textit{lossless-join} w.r.t. a set of FDs F if, for every instance \(r \) that satisfies F:

\[
\pi_X(r) \join \pi_Y(r) = r
\]

• In general one direction \(\pi_X(r) \join \pi_Y(r) \subseteq r \) is always true, but the other may not hold.

• Definition extended to decomposition into 3 or more relations in a straightforward way.

• \textit{It is essential that all decompositions used to deal with redundancy be lossless! (Avoids Problem (2).)}
Conditions for Lossless Join

• The decomposition of R into X and Y is lossless-join wrt F if and only if the closure of F contains:
 – \(X \cap Y \rightarrow X \), or
 – \(X \cap Y \rightarrow Y \)

• In particular, the decomposition of R into \(UV \) and \(R - V \) is lossless-join if \(U \rightarrow V \) holds over R.
Chase Test for Lossless Join

- $R(A,B,C,D)$ is decomposed into $S1=\{A,D\}$, $S2=\{A,C\}$, $S3=\{B,C,D\}$

- Construct a Tableau
 - One row for each decomposed relation
 - For each row i, subscript an attribute with i if it does not occur in S_i.

- FDs: $A \rightarrow B$, $B \rightarrow C$, $CD \rightarrow A$

- Rules for “equating two rows” using FDs:
 - If one is unsubscribed, make the other the same
 - If both are subscribed, make the subscripts the same

- Goal: one unsubscripted row

\[
\begin{array}{cccc}
A & B & C & D \\
\hline
a & b_1 & c_1 & d \\
a & b_2 & c & d_2 \\
a_3 & b & c & d \\
\end{array}
\]

\[
\begin{array}{cccc}
A & B & C & D \\
\hline
a & b_1 & c & d \\
a & b_2 & c & d_2 \\
x & b & c & d \\
\end{array}
\]
Dependency-preserving Decomposition

Dependency-preserving decomposition (Intuitive):
- If R is decomposed into X, Y and Z, and we enforce the FDs that hold on X, on Y and on Z, then all FDs that were given to hold on R must also hold. *(Avoids Problem (3)).*

Projection of set of FDs F: If R is decomposed into X, ... projection of F onto X (denoted F_X) is the set of FDs $U \rightarrow V$ in F^+ *(closure of F)* such that U, V are in X.

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>OS</td>
<td>Mark</td>
</tr>
</tbody>
</table>

F = \{ SC \rightarrow I, I \rightarrow C \}

Checking SC \rightarrow I requires a join!
Dependency-preserving Decomp. (Cont)

Decomposition of R into X and Y is dependency preserving if \((F_X \cup F_Y)^+ = F^+\)

- If we consider only dependencies in the closure \(F^+\) that can be checked in X without considering Y, and in Y without considering X, these imply all dependencies in \(F^+\).
- Example: ABC decomposed into AB and BC.
 - \(F=\{A \rightarrow B, \ B \rightarrow C, \ C \rightarrow A\}\).
 - Is this dependency preserving?
- Dependency preserving does not imply lossless join:
 - Eg. ABC, \(A \rightarrow B\), decomposed into AB and BC.
 - And vice-versa! (Example?)
Decomposition into BCNF

• Consider relation R with FDs F. \textit{How do we decompose R into a set of small relations that are in BCNF?}

• Algorithm:
 – If \(X \rightarrow Y \) violates BCNF, decompose R into R-Y and XY
 – Repeat until all relations are in BCNF.

• Example: ABCD, B \(\rightarrow \) C, C \(\rightarrow \) D, C \(\rightarrow \) A.

• Order in which we deal with the violating FD can lead to different relations!
BCNF Decomposition Algorithm (3.20)

• **Input**: R_0, set of FDs S_0
• **Output**: A decomposition of R_0 into a collection of relations, all of which are in BCNF
• Initially $R = R_0$, $S=S_0$

1. If R is in BCNF, return \{\{R\}\}
2. Let $X \rightarrow Y$ be a violation.
 a. Compute $X+$.
 b. Choose $R_1=X+$
 c. Let $R_2 = X \cup (R-X+)$
3. Compute FD projections S_1 and S_2 for R_1 and R_2
4. Recursively decompose R_1 and R_2 and return the union of the results
BCNF & Dependency Preservation

• BCNF decomposition using Algo 3.20 is lossless join

• BUT in general there may not be a dependency preserving decomposition into BCNF
 – Example: Bookings(Title, City, Theater), with FD’s : Th→C, TiC→Th
 – Not in BCNF.
 – Can’t decompose while preserving 2nd FD;

• This is the motivation for 3NF.
Decomposition into 3NF

• Obviously, the algorithm for lossless join decomp into BCNF can be used to obtain a lossless join decomp into 3NF (typically, can stop earlier).

• How can we ensure dependency preservation?
 – If X→Y is not preserved, add relation XY.
 – Problem is that XY may violate 3NF!
 – Example: JP→C is not preserved, so add JPC. What if FDs also include J→C?

• Refinement: Instead of the given set of FDs F, use a minimal cover for F.
Minimum Cover for a Set of FDs

- **Minimal cover or basis** G for a set of FDs F:
 - Closure of $F = \text{closure of } G$.
 - Right hand side of each FD in G is a single attribute.
 - If we modify G by deleting an FD or by deleting attributes from an FD in G, the closure changes.

- Intuitively, every FD in G is needed, and "as small as possible" in order to get the same closure as F.

- e.g., $A \rightarrow B$, $ABCD \rightarrow E$, $EF \rightarrow GH$, $ACDF \rightarrow EG$ has the following minimal cover:
 - $A \rightarrow B$, $ACD \rightarrow E$, $EF \rightarrow G$ and $EF \rightarrow H$
Computing the Minimal Cover

- Algorithm
 1. **Put the FDs into standard form** \(X \rightarrow A \). RHS is a single attribute.
 2. **Minimize the LHS of each FD.** For each FD, check if we can delete an attribute from LHS while preserving \(F^+ \).
 3. **Delete redundant FDs.**

- Minimal covers are not unique. Different order of computation can give different covers.
- e.g., \(A \rightarrow B, \ ABCD \rightarrow E, \ EF \rightarrow GH, \ ACDF \rightarrow EG \) has the following minimal cover:
 - \(A \rightarrow B, \ ACD \rightarrow E, \ EF \rightarrow G \) and \(EF \rightarrow H \)
3NF Decomposition Algorithm (3.26)

• **Input:** R, set of FDs F
• **Output:** A decomposition of R into a collection of relations, all of which are in BCNF

1. Find a minimal basis/cover for F, say G
2. For each FD X → A in G, use XA as one of the decomposed relations.
3. If none of the relations from Step 2 is a superkey for R, add another relation whose schema is a key for R.
Summary of Schema Refinement

• If a relation is in BCNF, it is free of redundancies that can be detected using FDs. Thus, trying to ensure that all relations are in BCNF is a good heuristic.

• If a relation is not in BCNF, we can try to decompose it into a collection of BCNF relations.
 – Must consider whether all FDs are preserved.
 – If a lossless-join, dependency preserving decomposition into BCNF is not possible (or unsuitable, given typical queries), should consider decomposition into 3NF.
 – Decompositions should be carried out and/or re-examined while keeping performance requirements in mind.