ICS 321 Data Storage & Retrieval

Functional Dependencies

Prof. Lipyeow Lim
Information & Computer Science Department
University of Hawaii at Manoa
Example: Movies1

<table>
<thead>
<tr>
<th>title</th>
<th>year</th>
<th>length</th>
<th>genre</th>
<th>studioName</th>
<th>starName</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star Wars</td>
<td>1977</td>
<td>124</td>
<td>SciFi</td>
<td>Fox</td>
<td>Carrie Fisher</td>
</tr>
<tr>
<td>Star Wars</td>
<td>1977</td>
<td>124</td>
<td>SciFi</td>
<td>Fox</td>
<td>Mark Hamill</td>
</tr>
<tr>
<td>Star Wars</td>
<td>1977</td>
<td>124</td>
<td>SciFi</td>
<td>Fox</td>
<td>Harrison Ford</td>
</tr>
<tr>
<td>Gone With the Wind</td>
<td>1939</td>
<td>231</td>
<td>drama</td>
<td>MGM</td>
<td>Vivien Leigh</td>
</tr>
<tr>
<td>Wayne’s World</td>
<td>1992</td>
<td>95</td>
<td>comedy</td>
<td>Paramount</td>
<td>Dana Carvey</td>
</tr>
<tr>
<td>Wayne’s World</td>
<td>1992</td>
<td>95</td>
<td>comedy</td>
<td>Paramount</td>
<td>Mike Meyers</td>
</tr>
</tbody>
</table>

- What are the keys for this relation?
- What if you ignore the column starName?
- Can starName be a key?
Functional Dependency

• A **functional dependency** $X \rightarrow Y$ holds over relation R if, for every allowable instance r of R:
 – for all tuples $t1, t2$ in r,

 $\pi_X(t1) = \pi_X(t2)$ implies $\pi_Y(t1) = \pi_Y(t2)$
 – i.e., given two tuples in r, if the X values agree, then the Y values must also agree. (X and Y are sets of attributes.)

• An FD is a statement about *all* allowable instances.
 – Must be identified based on semantics of application.
 – Given some allowable instance $r1$ of R, we can check if it violates some FD f, but we cannot tell if f holds over R!

• K is a candidate key for R means that $K \rightarrow R$
 – However, $K \rightarrow R$ does not require K to be *minimal*!
Keys & Superkeys

- A set of one or more attributes \(\{A_1, A_2, \ldots, A_n\} \) is a key for a relation \(R \) if:
 - 1. Those attributes functionally determine all other attributes of the relation.
 - 2. No proper subset of \(\{A_1, A_2, \ldots, A_n\} \) functionally determines all other attributes of \(R \).
- A key must be minimal.
- When a key consists of a single attribute \(A \), we often say that \(A \) (rather than \(\{A\} \)) is a key.
- **Superkey**: a set of attributes that contain a key.
FD Example: Movies

<table>
<thead>
<tr>
<th>title</th>
<th>year</th>
<th>length</th>
<th>genre</th>
<th>studioName</th>
<th>starName</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star Wars</td>
<td>1977</td>
<td>124</td>
<td>SciFi</td>
<td>Fox</td>
<td>Carrie Fisher</td>
</tr>
<tr>
<td>Star Wars</td>
<td>1977</td>
<td>124</td>
<td>SciFi</td>
<td>Fox</td>
<td>Mark Hamill</td>
</tr>
<tr>
<td>Star Wars</td>
<td>1977</td>
<td>124</td>
<td>SciFi</td>
<td>Fox</td>
<td>Harrison Ford</td>
</tr>
<tr>
<td>Gone With the Wind</td>
<td>1939</td>
<td>231</td>
<td>drama</td>
<td>MGM</td>
<td>Vivien Leigh</td>
</tr>
<tr>
<td>Wayne’s World</td>
<td>1992</td>
<td>95</td>
<td>comedy</td>
<td>Paramount</td>
<td>Dana Carvey</td>
</tr>
<tr>
<td>Wayne’s World</td>
<td>1992</td>
<td>95</td>
<td>comedy</td>
<td>Paramount</td>
<td>Mike Meyers</td>
</tr>
</tbody>
</table>

- What are the FDs for this relation?
- What are the keys for this relation?
- Can starName be a key?
Reasoning about FDs

• Given some FDs, we can usually infer additional FDs:
 – \(ssn \rightarrow deptID, \) \(deptID \rightarrow building \) implies \(ssn \rightarrow building \)

• \(T \) implies \(S \), or \(S \) follows from \(T \)
 – Every relation instance that satisfies all the FDs in \(T \) also satisfies all the FDs in \(S \)

• \(S \) is equivalent to \(T \)
 – The set of relation instances satisfying \(S \) is exactly the same as the set satisfying \(T \)
 – Alternatively, \(S \) implies \(T \) AND \(T \) implies \(S \)
Armstrong’s Axioms

Let X, Y, Z are sets of attributes:

• **Reflexivity**
 – If X is a subset of Y, then Y -> X

• **Augmentation**
 – If X -> Y, then XZ -> YZ for any Z

• **Transitivity**
 – If X -> Y and Y -> Z, then X -> Z

These are *sound* and *complete* inference rules for FDs!
Example: Armstrong’s Axioms

Hourly_Emps

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Lot</th>
<th>Rating</th>
<th>Hourly_Wages</th>
<th>Hours_worked</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-2366</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

- **Reflexivity**: If X is a subset of Y, then Y -> X
 - SNLR is a subset of SNLRWH, SNLRWH -> SNLR
- **Augmentation**: If X -> Y, then XZ -> YZ for any Z
 - S -> N, then SLR -> NLR
- **Transitivity**: If X -> Y and Y -> Z, then X -> Z
 - S -> R, R -> W, then S -> W
Two More Rules

<table>
<thead>
<tr>
<th>Firstname</th>
<th>Lastname</th>
<th>DOB</th>
<th>Address</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>Smith</td>
<td>Sep 9 1979</td>
<td>Honolulu,HI</td>
<td>808-343-0809</td>
</tr>
</tbody>
</table>

- **Union / Combining**
 - If \(X \rightarrow Y \) and \(X \rightarrow Z \), then \(X \rightarrow YZ \)
 - Eg. FLD \(\rightarrow \) A and FLD \(\rightarrow \) T, then FLD \(\rightarrow \) AT

- **Decomposition / Splitting**
 - If \(X \rightarrow YZ \), then \(X \rightarrow Y \) and \(X \rightarrow Z \)
 - Eg. FLD \(\rightarrow \) AT , then FLD \(\rightarrow \) A and FLD \(\rightarrow \) T

- **Trivial FDs**
 - Right side is a subset of Left side
 - Eg. F \(\rightarrow \) F, FLD \(\rightarrow \) FD

- **Does “XY \(\rightarrow \) Z imply X \(\rightarrow \)Z and Y \(\rightarrow \)Z” ?**
Closure

• **Implication**: An FD f is *implied by* a set of FDs F if f holds whenever all FDs in F hold.

 – $f=A \rightarrow C$ is *implied by* $F=\{ A\rightarrow B, B \rightarrow C \}$ (using Armstrong’s transitivity)

• **Closure F^+**: the set of all FDs implied by F

 – **Algorithm**:

 • start with $F^+=F$

 • keep adding new implied FDs to F^+ by applying the 5 rules (Armstrong’s Axioms + union + decomposition)

 • Stop when F^+ does not change anymore.
Example: Closure

- Given FLD is the primary key and C → Z
- Find the closure:
 - Start with \{ FLD → FLDSCZT, C → Z \}
 - Applying reflexivity, \{ FLD → F, FLD → L, FLD → D, FLD → FL, FLD → LD, FLD → DF, FLDSCZT → FLD, ... \}
 - Applying augmentation, \{ FLDS → FS, FLDS → LS, ... \}
 - Applying transitivity ...
 - Applying union ...
 - Applying decomposition ...
 - Repeat until \(F^+ \) does not change
Attribute Closure

• Computing the closure of a set of FDs can be expensive. (Size of closure is exponential in # attrs!)

• Typically, we just want to check if a given FD $X \rightarrow Y$ is in the closure of a set of FDs F. An efficient check:
 – Compute *attribute closure* of X (denoted X^+) wrt F:
 • Set of all attributes A such that $X \rightarrow A$ is in F^+
 • There is a linear time algorithm to compute this.
 – Check if Y is in X^+

• Does $F = \{ A \rightarrow B, \ B \rightarrow C, \ C \ D \rightarrow E \}$ imply $A \rightarrow E$?
 – i.e., is $A \rightarrow E$ in the closure F^+? Equivalently, is E in A^+?