ICS 321 Data Storage & Retrieval

Algebraic and Logical Query Languages (ii)

Asst. Prof. Lipyeow Lim

Information & Computer Science Department
University of Hawaii at Manoa
Datalog : Database Logic

• A (relational) **atom**
 – Consists of a predicate and a list of arguments
 – Arguments can be constants or variables
 – Takes on Boolean value (true or false)

• A relation R can be represented as a predicate R
 – A tuple \(<a, b, c, d, e, f, g>\) is in R iff the atom
 \(R(a, b, c, d, e, f, g)\) is true.
Example: tables in datalog

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Datalog

- $R(1,2)$
- $R(3,4)$

True by default.

R(1,4) would be false.

Lipyeow Lim -- University of Hawaii at Manoa
Arithmetic Atoms

\[x < y \]
\[x + 1 \geq y + 4z \]

Can contain both constants and variables.
Datalog Rules

LongMovie(t,y) :- Movies(t,y,l,g,s,p), l >=100

(t,y) is a tuple of LongMovie
IF (t,y,l,g,s,p) is a tuple of Movies and length of movie is at least 100

These two “t,y” have to match

These two “l” have to match

Aka “subgoal” Can be preceded by negation operator “NOT” or “~”

Anonymous variables

LongMovie(t,y) :- Movies(t,y,l,_,_,_,_), l >=100
Safety Condition for Datalog Rules

Every variable that appears anywhere in the rule must appear in some nonnegated, relational subgoal of the body.

• Without the safety condition, rules may be underspecified, resulting in an infinite relation (not allowed).

• Examples
 – LongMovie(t,y) :- Movies(t,y,l,_,_,_) , l >=100
 – P(x,y) :- Q(x,z), NOT R(w,x,z), x<y
Alternative Interpretation: Consistency

- For each consistent assignment of nonnegated, relational subgoal,
- Check the negated, relational subgoals and the arithmetic subgoals for consistency

<table>
<thead>
<tr>
<th>Q(x,z)</th>
<th>R(z,y)</th>
<th>Consistent?</th>
<th>NOT Q(x,y)</th>
<th>Head</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,2)</td>
<td>(2,3)</td>
<td>Yes</td>
<td>false</td>
<td></td>
</tr>
<tr>
<td>(1,2)</td>
<td>(3,1)</td>
<td>No, z=2,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1,3)</td>
<td>(2,3)</td>
<td>No, z=2,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1,3)</td>
<td>(3,1)</td>
<td>Yes</td>
<td>true</td>
<td>P(1,1)</td>
</tr>
</tbody>
</table>
Intensional vs Extensional

- **Extensional** predicates – relations stored in a database
- **Intensional** predicates – computed by applying one or more datalog rules

Datalog

```
Q(1,2)
Q(1,3)
R(2,3)
R(3,1)
P(x,y) :- Q(x,z), R(z,y), NOT Q(x,y)
```

extensional

intensional
What about bag semantics?

- Datalog still works if there are no negated, relational subgoals.
- Treat duplicates like non-duplicates

Datalog

- \(R(1,2) \)
- \(R(1,2) \)
- \(S(2,3) \)
- \(S(4,5) \)
- \(S(4,5) \)
- \(H(x,z) \) :- \(R(x,y) \), \(S(y,z) \)

<table>
<thead>
<tr>
<th>R(x,y)</th>
<th>S(y,z)</th>
<th>Consistent?</th>
<th>Head</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,2)</td>
<td>(2,3)</td>
<td>Yes</td>
<td>H(1,3)</td>
</tr>
<tr>
<td>(1,2)</td>
<td>(4,5)</td>
<td>No, y=2,4</td>
<td></td>
</tr>
<tr>
<td>(1,2)</td>
<td>(4,5)</td>
<td>No, y=2,4</td>
<td></td>
</tr>
</tbody>
</table>
| ... | ... | ... | ...

Lipyeow Lim -- University of Hawaii at Manoa
Example 1

Datalog

Answer(x,y) :- A(x,y)
Answer(x,y) :- B(x,y)
Example 2

\textbf{Datalog}

\[
\text{Answer}(x,y) :\text{-} \ A(x,y), \ B(x,y)
\]
Example 3

Datalog

Answer(x,y) :- A(x,y), NOT B(x,y)
Example 4

Datalog

\[\text{Answer}(x,y) :\ A(x,y),\ x > 10,\ y = 200 \]
Example 5

Datalog

\[\text{Answer}(x) \text{ :- } \text{A}(x,y) \]
Example 6

Datalog

\[\text{Answer}(w,x,y,z) \leftarrow \text{A}(w,x), \text{B}(y,z) \]
Example 7

Datalog

Answer(w,x,y) :- A(w,x), B(x,y)
Example 8

Datalog

Answer(w,x,z) :- A(w,x), B(y,z), x>y
Example 9

Datalog

Path(x,y) :- Edge(x,y)
Path(x,z) :- Edge(x,y), Edge(y,z)