Adapted from Ex 8.4.2. In this problem, we consider indexes for the relation

\[\text{Ships(name, class, launched)} \]

from our running battleships exercise. Assume:

i. \text{name} is the key.

ii. The relation \text{Ships} is stored over 50 pages.

iii. The relation is clustered on \text{class} so we expect that only one disk access is needed to find the ships of a given class.

iv. On average, there are 5 ships of a class, and 25 ships launched in any given year.

v. With probability \(p_1 \) the operation on this relation is a query of the form

\[\text{SELECT * FROM Ships WHERE name = } n. \]

vi. With probability \(p_2 \) the operation on this relation is a query of the form

\[\text{SELECT * FROM Ships WHERE class = } c. \]

vii. With probability \(p_3 \) the operation on this relation is a query of the form

\[\text{SELECT * FROM Ships WHERE launched = } y. \]

viii. With probability \(1 - p_1 - p_2 - p_3 \) the operation on this relation is an insertion of a new tuple into \text{Ships}.

You can also make assumptions about accessing indexes and finding empty space for insertions that were made in Example 8.14.

(a) If you can only create one index, how would you decide what index to create?

(b) If you can create any number of indexes, what are the possible index combinations?

(c) Consider the creation of indexes on \text{name, class, and launched}. For each combination of indexes, estimate the average cost of an operation. As a function of \(p_1, p_2, \) and \(p_3 \), what is the best choice of indexes?