The Data Management Problem

Where is the photo I took last Christmas?
Where did I read about “Turing Machines”?
Where is the invoice for this computer?
Which product is the most profitable?
What is ```data’’?```

- **Data** are known facts that can be recorded and that have implicit meaning.
- Three broad categories of data
 - Structured data
 - Semi-structured data
 - Unstructured data
- ```Structure’’ of data refers to the organization within the data that is identifiable.
What is a database?

- A **database**: a collection of related data.
 - Represents some aspect of the real world (aka universe of discourse).
 - Logically coherent collection of data
 - Designed and built for specific purpose
- A **data model** is a collection of concepts for describing/organizing the data.
- A **schema** is a description of a particular collection of data, using the a given data model.
The Relational Data Model

• **Relational database**: a set of **relations**

• A **relation** is made up of 2 parts:

 – **Instance**: a **table**, with rows and columns.
 #Rows = **cardinality**, #fields = **degree / arity**.

 – **Schema**: specifies name of relation, plus name and **domain/type** of each column or attribute.

 • E.G. Students(sid: string, name: string, login: string, age: integer, gpa: real).

• Can think of a relation as a **set** of rows or **tuples** (i.e., all rows are distinct).
Example Instance of Students Relation

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>login</th>
<th>age</th>
<th>gpa</th>
</tr>
</thead>
<tbody>
<tr>
<td>53666</td>
<td>Jones</td>
<td>jones@cs</td>
<td>18</td>
<td>3.4</td>
</tr>
<tr>
<td>53688</td>
<td>Smith</td>
<td>smith@eecs</td>
<td>18</td>
<td>3.2</td>
</tr>
<tr>
<td>53650</td>
<td>Smith</td>
<td>smith@math</td>
<td>19</td>
<td>3.8</td>
</tr>
</tbody>
</table>

• Q1. What is the cardinality of the relation instance?
 (a) 1 (b) 2 (c) 3 (d) 4

• Q2. What is the degree/arity of the relation instance?
 (a) 2 (b) 3 (c) 4 (d) 5
Why is the relational model useful?

• Supports simple and powerful query capabilities!

• Structured Query Language (SQL)

```
SELECT S.sname
FROM Students S
WHERE S.gpa>3.5
```

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>login</th>
<th>age</th>
<th>gpa</th>
</tr>
</thead>
<tbody>
<tr>
<td>53666</td>
<td>Jones</td>
<td>jones@cs</td>
<td>18</td>
<td>3.4</td>
</tr>
<tr>
<td>53688</td>
<td>Smith</td>
<td>smith@eecs</td>
<td>18</td>
<td>3.2</td>
</tr>
<tr>
<td>53650</td>
<td>Smith</td>
<td>smith@math</td>
<td>19</td>
<td>3.8</td>
</tr>
</tbody>
</table>
What is a DBMS?

• A *database management system (DBMS)* is a *collection of programs* that enables users to
 – *Create* new DBs and specify the structure using data definition language (DDL)
 – *Query* data using a query language or data manipulation language (DML)
 – *Store* very large amounts of data
 – *Support* durability in the face of failures, errors, misuse
 – *Control* concurrent access to data from many users
Types of Databases

- On-line Transaction Processing (OLTP)
 - Banking
 - Airline reservations
 - Corporate records

- On-line Analytical Processing (OLAP)
 - Data warehouses, data marts
 - Business intelligence (BI)

- Specialized databases
 - Multimedia

- XML

- Geographical Information Systems (GIS)

- Real-time databases (telecom industry)

- Special Applications
 - Customer Relationship Management (CRM)
 - Enterprise Resource Planning (ERP)

- Hosted DB Services
 - Amazon, Salesforce
A Bit of History

- 1970 Edgar F Codd (aka “Ted”) invented the relational model in the seminal paper “A Relational Model of Data for Large Shared Data Banks”
 - Main concept: relation = a table with rows and columns.
 - Every relation has a schema, which describes the columns.
- Prior 1970, no standard data model.
 - Network model used by Codasyl
 - Hierarchical model used by IMS
- After 1970, IBM built System R as proof-of-concept for relational model and used SQL as the query language. SQL eventually became a standard.
Transactions

• A transaction is the DBMS’s abstract view of a user program: a sequence of reads and writes.
 – Eg. User 1 views available seats and reserves seat 22A.

• A DBMS supports multiple users, ie, multiple transactions may be running concurrently.
 – Eg. User 2 views available seats and reserves seat 22A.
 – Eg. User 3 views available seats and reserves seat 23D.
ACID Properties of Transactions

- **Atomicity**: all-or-nothing execution of transactions
- **Consistency**: constraints on data elements is preserved
- **Isolation**: each transaction executes as if no other transaction is executing concurrently
- **Durability**: effect of an executed transaction must never be lost
Q3. Why use a DBMS?

a) The data is too large to manage in excel files
b) I do not want to write my own programs to find something in the data
c) I do not want to write my own program to manage multiple users and transactions
d) All of the above.
The Data Management Problem

Where is the photo I took last Christmas?
Where did I read about “Turing Machines”?
Where is the invoice for this computer?
Which product is the most profitable?
Unstructured Data

• What are some examples of unstructured data?
• How do we model unstructured data?
• How do we query unstructured data?
• How do we process queries on unstructured data?
• How do we index unstructured data?
Unstructured Text Data

• Field of “Information Retrieval”
• Data Model
 – Collection of documents
 – Each document is a bag of words (aka terms)
• Query Model
 – Keyword + Boolean Combinations
 – Eg. DBMS and SQL and tutorial
• Details:
 – Not all words are equal. “Stop words” (eg. “the”, “a”, “his” ...) are ignored.
 – Stemming: convert words to their basic form. Eg. “Surfing”, “surfled” becomes “surf”
Inverted Indexes

• Recall: an index is a mapping of search key to data entries
 – What is the search key?
 – What is the data entry?

• Inverted Index:
 – For each term store a list of postings
 – A posting consists of \(<\text{docid},\text{position}>\) pairs

What is the data in an inverted index sorted on?

<table>
<thead>
<tr>
<th>lexicon</th>
<th>Posting lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBMS</td>
<td>doc01 10 18 20</td>
</tr>
<tr>
<td>SQL</td>
<td>doc06 1 12</td>
</tr>
<tr>
<td>trigger</td>
<td>doc01 12 15</td>
</tr>
</tbody>
</table>
Lookups using Inverted Indexes

• Given a single keyword query “k” (eg. SQL)
 – Find k in the lexicon
 – Retrieve the posting list for k
 – Scan posting list for document IDs [and positions]

• What if the query is “k1 and k2”?
 – Retrieve document IDs for k1 and k2
 – Perform intersection
Too Many Matching Documents

- Rank the results by “relevance”!
- Vector-Space Model
 - Documents are vectors in high-dimensional space
 - Each dimension in the vector represents a term
 - Queries are represented as vectors similarly
 - Vector distance (dot product) between query vector and document vector gives ranking criteria
 - Weights can be used to tweak relevance
- PageRank (later)
Q4. Which of the following is the most similar to an inverted index?

a) Bookmarks.
b) Content page of a book.
c) The index at the end of a book.
d) A deck of playing cards.
Internet Search Engines

- World Wide Web
- Web Crawler
- Web Page Repository
- Search Engine Web Server
- Indexer
- Inverted Index

Keywords: Query, Ranked Results, Snippets, Doc IDs, Postings etc.
Basic Web Search

<table>
<thead>
<tr>
<th>Query Expression</th>
<th>What it means</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biking italy</td>
<td>Biking AND italy</td>
</tr>
<tr>
<td>Recycle steel OR iron</td>
<td>Recycle AND (steel OR iron)</td>
</tr>
<tr>
<td>“I have a dream”</td>
<td>“I have a dream” treated as one term</td>
</tr>
<tr>
<td>Salsa -dance</td>
<td>Salsa AND NOT dance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other nifty expressions</th>
<th>What it means</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 + 34 - 56 * 7 / 8</td>
<td>Evaluates the arithmetic expression</td>
</tr>
<tr>
<td>300 Euros in USD</td>
<td>Converts 300 euros to US currency</td>
</tr>
</tbody>
</table>
Ranking Web Pages

- **Google’s PageRank**
 - Links in web pages provide clues to how important a webpage is.

- **Take a random walk**
 - Start at some webpage p
 - Randomly pick one of the links and go to that webpage
 - Repeat for all eternity

- **The number of times the walker visits a page is an indication of how important the page is.**

Vertices represent web pages. Edges represent web links.
Semi-structured Search

Web pages are not really unstructured! Click “view source” to view HTML.

<table>
<thead>
<tr>
<th>Query Expression</th>
<th>What it means</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>define: imbroglio</code></td>
<td>Find definitions of “imbroglio”</td>
</tr>
<tr>
<td>Halloween <code>site: www.census.gov</code></td>
<td>Restrict search for “halloween” to US census website</td>
</tr>
<tr>
<td>Form 1098-T IRS <code>filetype: pdf</code></td>
<td>Find the US tax form 1098-T in PDF format</td>
</tr>
<tr>
<td><code>link: warriorlibrarian.com</code></td>
<td>Find pages that link to Warrior Librarian's website</td>
</tr>
<tr>
<td>Dan Shugar <code>intext: Powerlight</code></td>
<td>Find pages mentioning Dan Shugar where his company, Powerlight, is included in the text of the page, i.e., less likely to be from the corporate website.</td>
</tr>
<tr>
<td><code>allintitle: Google Advanced Operators</code></td>
<td>Search for pages with titles containing "Google," "Advanced," and "Operators"</td>
</tr>
</tbody>
</table>
Summary

• Data Management Problem
 – How do we pose and answer queries on data?

• Structured data
 – Relational Data Model
 – SQL
 – Relational DBMS
 – Transactions

• Unstructured data
 – Bag of terms
 – Boolean combination of keyword queries
 – Inverted Indexes (Web Search Engines)

• Semi-structured data
 – Could use techniques from either structured or unstructured
 – More sophisticated keyword queries