Challenges in microbial water quality studies in Hawaii

Marek Kirs
kirs@hawaii.edu
What is the best indicator of clean beach water?

<table>
<thead>
<tr>
<th>This Factor BEST Explains What Clean Beach Water Means</th>
<th>Responding ‘Yes’ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear or colorless water</td>
<td>19.1</td>
</tr>
<tr>
<td>No disease-causing pathogens</td>
<td>48.7</td>
</tr>
<tr>
<td>No Trash</td>
<td>23.7</td>
</tr>
<tr>
<td>No wildlife</td>
<td>0.4</td>
</tr>
<tr>
<td>Odorless water</td>
<td>8.1</td>
</tr>
</tbody>
</table>

Jones, et al., 2018
Why water quality matters?

Human health concern (drinking water, recreational water, seafood)

Environmental concern (habitat degradation, etc.)

Economy

Globally: ~120 million cases of GI and > 50 Million cases of severe RD per year from swimming and bathing in polluted coastal waters (Shuval, 2003)

Loss: $700 million per year (Shuval, 2005)

US: 90 million cases illnesses per year from recreational water use

Loss: $2.2-3.7 billion per year (DeFlorio-Barker, et al., 2018)

(Illness based burden, environmental impact and related losses not accounted for)
How clean are our beaches?

Hawaii: Ranked Number 7th (out of 30) in the US

Hawaii 2013 Beach Water Quality Summary

Percent of samples exceeding the national Beach Action Value (BAV) safety threshold
- 415 beaches (88%) were not monitored or had a limited number of samples (fewer than 12)
- 20 beaches (4%) did not have any samples exceed the national BAV safety threshold
- 25 beaches (5%) had >0-10% of their samples exceed the national BAV safety threshold
- 4 beaches (1%) had >10-20% of their samples exceed the national BAV safety threshold
- 6 beaches (1%) had more than 20% of their samples exceed the national BAV safety threshold

Percent of Samples Exceeding Daily Bacterial Maximum for 95 Beaches Reported 2009-2013

* Please note exceedance rates for 2013 are shown based on the new BAV safety threshold and the historical national standard for comparison purposes. Additionally, only samples from a common set of beaches monitored each year from 2009-2013 are included in the bar chart.

(NRDC, 2014: “Testing the Waters”)
What makes you sick?

Pathogenic bacteria, viruses (Wade et al., 2018), and protozoa (sewage-borne, environmental)

What illnesses?

• Gastroenteritis
• Skin rash
• Eye and ear infections
• Respiratory infections
• Wound infections
• Others...

Often symptoms mild, not reported
How are the water quality standards derived?
EPA epidemiological studies

Based on studies conducted on beaches impacted by point-source!
Can be too protective when major source of indicator bacteria is non-point (HI)

Figs from: US EPA 2012. Recreational Water Quality Criteria
Regulations
EPA Recreational Water Quality Criteria (RWQC) (2012)

Health risk based:
Green recommendation – illness rate 36 per 1000 recreators
Red recommendation – illnesses rate 32 per 1000 recreators

<table>
<thead>
<tr>
<th></th>
<th>Geometric Mean Density</th>
<th>Beach Action Value (BAV) 75th percentile</th>
<th>Statistical Threshold Value (STV) 90th percentile (10% samples should not exceed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshwater:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterococci</td>
<td>35 or 30</td>
<td>70 or 60</td>
<td>130 or 110</td>
</tr>
<tr>
<td>E. coli</td>
<td>126 or 100</td>
<td>235 or 190</td>
<td>410 or 320</td>
</tr>
<tr>
<td>Marine:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterococci</td>
<td>35 or 30</td>
<td>70 or 60</td>
<td>130 or 110</td>
</tr>
</tbody>
</table>

IMPORTANT: health risk established on beaches impacted by point sources (sewage)
Regulations

EPA Recreational Water Quality Criteria (RWQC) (2012)

RWQC are used to:

1) derive water quality-based effluent limits (WQBELs)
 National Pollutant Discharge Elimination System (NPDES) permits,

2) identify impaired and threatened waters for waterbody assessments (§303(d) reporting),

3) develop waste load allocations and load allocations for TMDLs, and

4) for beach notification programs under §406 of the CWA (BAV)
Regulations (HAWAII)

• Each state develops recreational water quality STANDARDS based on EPA RWQC

• HAWAII recreational water quality standards (HAR Chapter 11-54-8) (2014):

 Based on Enterococci:

 GM 35 CFU/100 ml (over 30 day)
 STV 130 CFU/100 ml (10% of samples within 30 day period)

- Hawaii does NOT close beaches due to the indicator bacteria levels, we do post caution and warning signs
Regulations

EPA Recreational Water Quality Criteria (RWQC) (2012)

Health risk based:
- **Green recommendation** – illness rate 36 per 1000 recreators
- **Red recommendation** – illnesses rate 32 per 1000 recreators

<table>
<thead>
<tr>
<th>Geometric Mean Density</th>
<th>Beach Action Value (BAV) 75th percentile</th>
<th>Statistical Threshold Value (STV) 90th percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>(MPN or CFU / 100 ml)</td>
<td></td>
<td>(10% samples should not exceed)</td>
</tr>
</tbody>
</table>

Freshwater:

<table>
<thead>
<tr>
<th></th>
<th>Geometric Mean Density</th>
<th>Beach Action Value (BAV) 75th percentile</th>
<th>Statistical Threshold Value (STV) 90th percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterococci</td>
<td>35 or 30</td>
<td>70 or 60</td>
<td>130 or 110</td>
</tr>
<tr>
<td>E. coli</td>
<td>126 or 100</td>
<td>235 or 190</td>
<td>410 or 320</td>
</tr>
</tbody>
</table>

Marine:

<table>
<thead>
<tr>
<th></th>
<th>Geometric Mean Density</th>
<th>Beach Action Value (BAV) 75th percentile</th>
<th>Statistical Threshold Value (STV) 90th percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterococci</td>
<td>35 or 30</td>
<td>70 or 60</td>
<td>130 or 110</td>
</tr>
</tbody>
</table>

HAWAII
Hawaii recreational water quality information:

Hawaii Department of Health Clean Water Branch
http://health.hawaii.gov/cwb/
Challenge 1:

Small sample volume issue
- Current monitoring programs evaluate water quality based on 100 ml sample volumes while overwhelming evidence shows that microbial (including indicator bacteria) concentrations vary vastly in space and time.

- **Sample volumes** used in current monitoring programs are often **not sufficient** for the detection of many source specific markers and human pathogens.

 Huge concern in coastal environments as such a small water sample is not representative of the actual water quality.

 Analyses of large sample volumes is needed.
Ultrafiltration (UF)

Wide array of options:

- Design (tubular, spiral, plate, etc)
- Tangential-flow and dead-end options
- Pore size
- Material
- etc.
DEUF based sample concentrator - PMACS

(Portable Multi-use Automated Concentration System)

- Dead-end ultrafiltration device
- Automated
- Hollow fiber filter cartridges
- 150 kDa
- >100 L
- Light and portable

Recovery module

Collection module
<table>
<thead>
<tr>
<th>Site</th>
<th>Enterococci (MPN/100ml)</th>
<th>F+ coliphages (PFU/100ml)</th>
<th>C. perfringens (CFU/100ml)</th>
<th>Somatic coliphages (PFU/100ml)</th>
<th>Human-associated Bacteroides (HF183/287)(gc/100ml)</th>
<th>Pepper mild mottle viruses (gc/100ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><0.04</td>
<td>13.02</td>
<td>0.08</td>
<td>0.04</td>
<td><0.04</td>
<td>0.20</td>
</tr>
<tr>
<td>2</td>
<td>>97</td>
<td>0.432</td>
<td>4.892</td>
<td>24.52</td>
<td>>97</td>
<td>8.36</td>
</tr>
<tr>
<td>3</td>
<td>0.04</td>
<td>0.54</td>
<td>1.196</td>
<td><0.04</td>
<td><0.04</td>
<td>0.12</td>
</tr>
<tr>
<td>4</td>
<td>>97</td>
<td>8.36</td>
<td>168.8</td>
<td>226</td>
<td>>97</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>>97</td>
<td>8</td>
<td>29.2</td>
<td>153.2</td>
<td>>97</td>
<td>8</td>
</tr>
</tbody>
</table>

Site 1:

- **Enterococci (MPN/100ml):**
 - 6/13/2017: <0.04
 - 6/20/2017: 13.02
 - 6/27/2017: 0.08
 - 7/5/2017: 0.04

- **F+ coliphages (PFU/100ml):**
 - 6/13/2017: <0.04
 - 6/20/2017: <0.04
 - 6/27/2017: <0.04
 - 7/5/2017: <0.04

- **C. perfringens (CFU/100ml):**
 - 6/13/2017: <0.04
 - 6/20/2017: 0.2
 - 6/27/2017: 0.08
 - 7/5/2017: 0.16

- **Somatic coliphages (PFU/100ml):**
 - 6/13/2017: <0.04
 - 6/20/2017: <0.04
 - 6/27/2017: <0.04
 - 7/5/2017: <0.04

- **Human-associated Bacteroides (HF183/287)(gc/100ml):**
 - 6/13/2017: negative
 - 6/20/2017: negative
 - 6/27/2017: negative
 - 7/5/2017: negative

- **Pepper mild mottle viruses (gc/100ml):**
 - 6/13/2017: negative
 - 6/20/2017: negative
 - 6/27/2017: negative
 - 7/5/2017: negative
Pros:
Provides more **representative** sample
Excellent for detection of rare targets (such as pathogens)
Can pick up 28 nm sized viral particles (150 kDa cutoff)
Utilizes disposable filters which are reasonably priced ($30) (avoids cross-contamination)

Cons:
Labor and time intensive
Further concentration steps needed for molecular work (~370 ml)
PCR inhibitors can be a challenge
Cleanup-contamination concern

Choose wisely!
Challenge II:

Current methods slow, need for rapid beach notifications
Sewage spill now estimated at 500,000 gallons; Visitors urged to stay out of Waikiki water

2015

Hawaii's legendary Waikiki beach deserted after sewage spill

By Associated Press
August 24, 2015 | 9:56am

An employee of the Hawaii Department of Health takes a water quality sample at Ala Moana Beach Park in Honolulu.

2013

Sewage Spills Into Ala Wai Canal

A broken sewage pipe in Makiki has leaked 4,400 gallons of wastewater into a culvert leading into the Ala Wai Canal.

OCTOBER 10, 2013 - By Civil Beat

2014

Honolulu Harbor off-limits after wastewater spill, pollutes Oahu's south shore

Mariela Mariscal and Brigitte Namata
Published: October 20, 2014, 8:56 am | Updated: October 20, 2014, 6:14 pm

Honolulu Harbor remains off-limits after wastewater spill
Wastewater bacteria were detected yesterday and you should not have swum.

Water quality might be OK today.

Please check our website tomorrow.

Based on a slide from Dr. J. Griffith presentation.
Method 1609: Enterococci in Water by TaqMan® Quantitative Polymerase Chain Reaction (qPCR) with Internal Amplification Control (IAC) Assay

October 2012

Method 1611: Enterococci in Water by TaqMan® Quantitative Polymerase Chain Reaction (qPCR) Assay

March 2013
Hawaii and rapid methods

HI extremely well suited:

• ~8 million tourists per year, many high use beaches (Waikiki beaches, Ala Moana)

• High use beaches are easy to reach, hence easy to sample and post

Rapid accurate methods would make difference (ruining on not ruining a person vacation)
Water is good to swim **today**

http://www.sccwrp.org/
Pros:

- Same day response
- Improved service to visitors and residents

Cons:

- Methods complicated
- Many states have beaches which are far away and hard to reach
- Many beaches see few visitors
- Cost
- ...and growth of enterococci in extra-enteric environments

ADDITIONAL PARALLEL TEST(S) NEEDED!
Challenge III:

High background levels of indicator bacteria in HI: Any from sewage? (microbial source tracking)
EPA epidemiological studies conducted on beaches impacted by sewage

NRDC, 2012: “Testing the Waters”

No science to close the beach
High background levels of indicator bacteria in HI: microbial source tracking

The STANDARD - enterococcus (facultative anaerobe):
• is not human specific
• grows in Hawaii soils, and other extra-enteric environments
 – Luther & Fujioka (2004): 3.2 - 56,000 CFU/g, (n=5)
 – Kirs (unpublished): <1 - >2,420 MPN/g, GM=46 (n=33)

The sewage tracer – *C. perfringens* (obligate anaerobe)
• is not human specific
• remains viable for long periods in sediments
Microbial Source Tracking (MST):
Set of tools to identify the source of fecal contamination in ground and surface waters

Importance:
• Different Health Risk!
• Management!
• Mediating Conflicts!

US: 10^9 tons/year

Agricultural and Human Sources of Feces in the U.S.
Cultivation or microscopy based techniques aren’t able to distinguish between source specific strains...

...but molecular techniques can.
Target organisms

- Bacteroidales
- *Methanobrevibacter*
- F^+ specific RNA Coliphages
- Different groups of viruses
- Enterococci
- *E. coli*
- and others ...
Strategy

- site survey
- local knowledge and historical data
- case by case basis
- multi-tiered approach
- single sample has little or no value (wet/dry)
- single marker has little or no value

Important:
1. Markers need to be validated on local population for specificity (false positives) and sensitivity (prevalence in host population)

2. Ideally die-off (decay) of the markers in given region water matrix should also be identified

3. Ideally verify ability to discriminate between fecal sources by blind testing mixed samples:
How to determine sewage source: Manoa watershed study

Nine sites analyzed monthly for one year for concentrations of:
1) enterococci, *E. coli*, *C. perfringens*,
2) two sewage markers (HF183, HPyV), and
3) bacterial community structure
Typical for HI stream!

ENTEROCOCCI: 74-7,450 MPN/100ml

E.coli: 52-17,239 MPN/100ml

[Graph showing Concentration (log(MPN or CFU/100 mL)) and Salinity (ppt) across different sites (MS-1 to MS-9).]
Enterococcus stand. exceeded (%):
- MS-1: 9 (75)
- MS-2: 12 (100)
- MS-3: 12 (100)
- MS-4: 12 (100)
- MS-5: 12 (100)
- MS-6: 5 (41.7)
- MS-7: 4 (33.3)
- MS-8: 1 (8.3)
- MS-9: 1 (8.3)

C. perfringens STV exceeded (%):
- MS-1: 0 (0)
- MS-2: 4 (33.3)
- MS-3: 7 (58.3)
- MS-4: 8 (66.7)
- MS-5: 9 (75.0)
- MS-6: 6 (50)
- MS-7: 1 (8.3)
- MS-8: 1 (8.3)
- MS-9: 0 (0)

In violations with the Hawaii standard and STV (both exceeded) (%):
- MS-1: 0 (0)
- MS-2: 4 (33.3)
- MS-3: 7 (58.3)
- MS-4: 8 (66.7)
- MS-5: 9 (75.0)
- MS-6: 6 (50)
- MS-7: 1 (8.3)
- MS-8: 1 (8.3)
- MS-9: 0 (0)
Human markers

<table>
<thead>
<tr>
<th>Site</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human-associated Bacteroides</td>
<td>2 (15%)</td>
<td>13 (100%)</td>
<td>12 (92%)</td>
<td>11 (85%)</td>
<td>12 (92%)</td>
<td>11 (85%)</td>
<td>9 (69%)</td>
<td>10 (77%)</td>
<td>5 (38%)</td>
</tr>
<tr>
<td>Human Polyomavirus</td>
<td>0 (0%)</td>
<td>5 (38%)</td>
<td>8 (62%)</td>
<td>8 (62%)</td>
<td>7 (54%)</td>
<td>6 (46%)</td>
<td>0 (0%)</td>
<td>1 (8%)</td>
<td>1 (8%)</td>
</tr>
<tr>
<td>Site</td>
<td># of samples</td>
<td>Number of OTUs</td>
<td>Shannon</td>
<td>Simpson</td>
<td>Fisher (α)</td>
<td>Evenness (J)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>----------------</td>
<td>---------</td>
<td>---------</td>
<td>------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WWTP</td>
<td>10</td>
<td>79</td>
<td>1.51</td>
<td>0.63</td>
<td>5.30</td>
<td>0.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS-1</td>
<td>2</td>
<td>377</td>
<td>4.16</td>
<td>0.95</td>
<td>51.27</td>
<td>0.77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS-2</td>
<td>3</td>
<td>449</td>
<td>3.71</td>
<td>0.90</td>
<td>42.78</td>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS-3</td>
<td>3</td>
<td>456</td>
<td>3.76</td>
<td>0.93</td>
<td>42.16</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS-4</td>
<td>3</td>
<td>279</td>
<td>2.51</td>
<td>0.76</td>
<td>22.65</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS-5</td>
<td>3</td>
<td>348</td>
<td>2.88</td>
<td>0.82</td>
<td>29.78</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS-6</td>
<td>3</td>
<td>408</td>
<td>3.58</td>
<td>0.92</td>
<td>32.51</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS-7</td>
<td>3</td>
<td>138</td>
<td>2.60</td>
<td>0.82</td>
<td>10.51</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS-8</td>
<td>2</td>
<td>113</td>
<td>3.00</td>
<td>0.89</td>
<td>11.88</td>
<td>0.69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS-9</td>
<td>3</td>
<td>167</td>
<td>2.43</td>
<td>0.83</td>
<td>11.32</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sewage related fingerprint was detected at all sites from MS-2 to MS-5. Roughly 0.8-5.3% of the bacterial population could be associated with wastewater.
Manoa watershed: conclusions

• Sewage related impairment by three lines of evidence: indicator bacteria, MST markers, and bacterial community structure comparisons
• Massive sewage leak: probably not
• Markers support enterococci AND C. perfringens based monitoring
• Ala Wai not so bad (dilution)
• Old sewer lines and illegal cross-connections/hookups – universal problem
Take Home

- Enterococci grow in Hawaiian soils, hence do not necessarily reflect health risk associated with sewage borne contaminants. Therefore posting beaches solely based on the concentrations of enterococci can: 1) harm public opinion about Hawaii, and 2) decrease public attention to beach postings.

- Analyzes of larger sample volumes provides better representation of water quality and can be used to detect microbes which are present at low concentrations such as many pathogens. Yet you need to be smart when to use ultrafiltration.

- Rapid molecular methods can provide beach water quality information a few hours after sample collection and are well suited for popular beaches in Hawaii.

- Several options exists to detect sewage in water samples.
Questions?