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What evolution maximizes
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There has been controversy in recent years as to
the quantities, if any, that are maximized during
evolution. Some biologists have been sceptical on
whether any quantity is maximized (e.g. Pierce &
Ollason, 1987; articles in Dupré, 1987) and others
have expressed concern at the lack of a consensus
(see Nur, 1987; Maynard Smith, 1978; for reviews).
My aim here is to briefly review the problem, and
to argue in favour of a ‘selfish gene’ solution, as
advocated persuasively by Dawkins (1976, 1982,
1986). I shall use gene and allele synonymously
(following e.g. Crow, 1986). Briefly, Dawkins
argues that evolutionary insights are achieved, and
pitfalls avoided, by considering the fate of a gene
(i.e. an allele) coding for whatever trait(s) is (are)
under study. Thus, for example, the study of
altruism has been forwarded by considering
whether or not a gene that caused individuals to
help relatives at some cost to themselves would
spread.

Formally, the question is whether or not a gene
with specified properties will spread, in a
specified population and environment, faster than
others with similar but not identical properties.
Clearly alleles now common have, at some past
time, spread in populations, and have not been
displaced by alternative alleles. In other words,
such alleles had a higher (i.e. positive) rate of
increase when they were spreading, and competi-
tor alleles which were not able to invade, had
lower, possibly negative, rates of increase. Hence
selected alleles have had a higher rate of increase
than their competitors, and this shows that the rate
of increase of an allele is a maximized quantity.
Rate of increase must decline, of course, as an
allele nears fixation and the genetic composition
of the population changes. A full analysis should
therefore compare the rates of increase of rival
alleles at all stages (see below).

Most biologists would surely accept the view,
that rate of increase of an allele is maximized. Rate
of increase of a gene is straightforward to calculate
if all carriers of the gene have the same, known, life
cycle and this is shown in detail in the next
section. For many theoretical purposes, this will
be a sufficient definition of fitness. However
homozygous and heterozygous individuals may
have different life cycles, so that different geno-
types have different selective effects. This is the
stuff of classical population genetics and methods
are available that use the proportions and rates of
increase of the different genotypes to calculate the
rate of increase of the component genes (see e.g.
Crow, 1986). However, there can be major prob-
lems in calculating the rate of increase of a
genotype, because the newborn of the genotype are
not necessarily the offspring of parents of that
genotype (Denniston, 1978; Nur, 1987; Charles-
worth, 1970). For example, AB individuals can be
the offspring of AA X AB, AA X BB, etc. Hence the
rate of increase of a genotype cannot be derived
solely from the life table of that genotype, since
information is also needed on the life tables of the
other genotypes in the population. Consequently
the Malthusian paramefer for a genotype is not
necessarily a good estimator of its rate of increase
(Denniston, 1978; Nur, 1987).

However, these problems do not arise in esti-
mating the rate of increase of an allele. In this case
the newborn containing the allele are necessarily
the offspring of parents that, between them, must
contain at least one copy of the allele. Indeed, in
the absence of meiotic drive, the chance of a copy
in a parent getting into a specified offspring via
meiosis is Y2 (Mendel’s first law). If all carriers of
the allele have the same life table, then the
Malthusian parameter does estimate the rate of
increase of the allele (see below). Thus although
the Malthusian parameter of a genotype has some-
times been regarded as the quantity maximized in
the evolutionary process, it seems in every way
preferable to use the rate of increase of an allele.
Following Sibly & Calow (1986a) I shall refer to
this as the fitness, F, of the allele, in a specified

_population and environment (see below).
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Fig. 1. The semelparous life cycle.

Calculation of the rate of increase of an allele
(1) Semelparous life cycles

S; is the probability of individuals carrying the
gene surviving to age t;, at which point each gives
birth (or sires) n offspring, half of which (on
average) receive a copy of each allele present in a
parent (Fig. 1). Thus there are %2n copies in
offspring for each copy present in a parent.
However, individuals survive to breed with
chance S;, so there are Y2 n S; copies in offspring at
time ¢, for each copy present in offspring at time 0.

It is often convenient to use an instantaneous
rate of increase, and this is what I am calling
fitness, F. A good analogy occurs in the financial
markets, where rates of increase are usually pre-
sented as instantaneous rates but the annual incre-
ment is also sometimes calculated. The annual
increment is slightly greater than the instant-
aneous rate of increase. An investment of one
dollar is worth e* dollars after a year, representing
an increase of e — 1, i.e. slightly more than F.

In the present context there are e copies of the
gene at time ¢; for each copy present at time 0, so e/
= Y2n S;. This equation can also be written as

1
=7 log. (Y2n S), Equation 1
J

or as

1= Y%n S;e ™ Equation 2
for comparison with the equation relevant to more
complex life cycles (see below).

(2) Annual iteroparous life cycle

The life cycle is as before except that adults
survive after reproduction, i.e. there is a chance,
Sa, that they live to the following breeding season
and they may potentially live for ever (Fig. 2). In
other words there is no senescence built into this
model. The interval between breeding seasons is
the same as the juvenile development period. As in

model 1, for each allele in an individual about to
breed, n/2 copies occur in its offspring (on average)
and these survive to breed with chance S;. Hence
Y2n S; copies get to next breeding via offspring. In

‘addition, the adult itself may survive, with chance

S, Hence in total Y2n S; + S, copies reach next
breeding for each copy in existence now.

Thus e""=12nS;+ S, Equation 3
or 1=%nS;e M+ S,e Equation 4
nn n n
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Fig. 2. The annual iteroparous life cycle.

(3) Simple iteroparous model

The life cycle is as in model 2 except that the
juvenile development period t; may differ from the
interval between breeding attempts t, (Fig. 3).
Since we may henceforth be interested in variation
in the timing of breeding, it is attractive to replace
survivorship variables (S; and S,) by expressions
involving t; and t, and the appropriate mortality
rates, p; and pg. This is because survivorship
declines with time, so that S and ¢ are not indepen-
dent variables, whereas p and ¢ are. Survivorship S
over a period t when the mortality rate is p is given
by the expression S = e™*.

Consider all copies N of the gene that are in
adults about to reproduce at some time X. Some
copies are in adults which last bred ¢, years ago
when there were N e~ copies in adults about to
breed. These adults survived to X with chance
e~ "%, Thus e™* N e~ genes come via this route.

The other copies come via offspring born t; ago,
when there were N e~ copies in adults about to
breed. Those adults produced n offspring each, so
Y%.n N e ' copies appeared in offspring, which
survived to X with chance e™**%. Thus Y2n Ne "4
e~ genes came by this route.

n n n n
Birth T T T T
Time
— e ly—fy——
—S Sy —Sy—5,~

Fig. 3. The simple iteroparous life cycle.



131

What
evolution
maximizes

Thus the total number of adults about to breed at
time X is

N=14nNe Wi ~Fi 4 Ng e ~Fla Equation 5
Dividing by N we have
1="Yzne Wil 4 g rale~Fla Equation 6

(4) General iteroparous model

The life cycle is completely general, with n,
offspring being produced at age t,, n, at t, and so
on (Fig. 4). Age at last breeding will be written ¢g.
Survivorship from birth to t; will be written 1;.

R N I 1.

(0] f| fz f3 fn Time

Fig. 4. The general iteroparous life cycle.

Consider all copies N of the gene that appear in
offspring at time X. Some copies come from
parents which are t; years old. The number of
copies that appeared in offspring ¢, years ago was
Ne~F 4, These copies survived to breeding age with
chance ], and then each produced ¥z n; copies in
offspring.

Thus 2 Ne 1 I, n, genes come from parents ¢,
years old. Similarly ¥2 N e~*'2 I,n, genes come
from parents t, years old, and so on. The sum of all
these is the total number of copies appearing in
offspring at time X, i.e.

N=%Ne ™ Ln +%Ne ™ Ln, + ...
+ I\IG_Fm IQHQ
Q

21=v% 3 e filn;
i=1

Equation 7

Assumptions

In all these models it is assumed that all carriers of
an allele have the same life cycle. In particular, life
cycles do not differ between sexes or generations.
Since fecundity varies with age in model 4, it is
necessary here that males mate with females of the
same age: otherwise they could not achieve the
fecundity characteristic of their ages. In models 3
and 4 it is necessary to assume that the instan-
taneous rate of increase, F, is constant over some
period. In model 3 this period is the greater of f;
and t,, and in model 4 it is to. Using this approach

no assumption is necessary about the stability of
the age distribution.

Linton et al. (in preparation) have made some
progress in relaxing these assumptions using
computer simulation. They chose to model the
annual iteroparous life cycle to avoid the timing
problems inherent in the more complex models
and discovered that the same strategies evolved
whether or not the gene was expressed in both
sexes. Not surprisingly, however, evolution was
faster if the gene was expressed than if it was silent
in the second sex. In a second set of simulations
they discovered that variation in survivorships
between generations had surprisingly little effect
on either the rate or the outcome of evolution, even
when the standard deviation of the variation was
equal to its mean. This condition occurs, for
example, when survivorship oscillates between 0
and some maximum value, i.e. a fairly extreme
form of variation.

This suggests that the effects of population
fluctuations and unstable age distributions will
not be marked but there is scope for further work in
this area. An initial problem is to decide what
types of fluctuation and age distribution should be
investigated. Some important mathematical
results in this field have been obtained by Tulja-
purkar (1982). The evolutionary effects of density
dependence have been considered by Sibly &
Calow (1986a, 1987) and Bulmer (1985).

Changes as a gene approaches fixation

As a gene spreads in the population, its rate of
increase must eventually decline to zero and the
pattern of spread that is usually assumed is shown
in Fig. 5. As noted in the previous section, it is
assumed in estimating rate of increase that this
quantity is constant, over a period which is less
than or equal to greatest reproductive age (depend-
ing on the life cycle assumed, see above). However
greatest reproductive age is small compared to the
time scale of Fig. 5, so it is a reasonable simplifi-
cation to suppose that rate of increase is constant
over this period.

It is usually the case that the optimal strategy
depends at least to some extent on the rate of
increase (Sibly & Calow, 1984, 1986a). However,
very few genes would be able to modify the life
cycle of their carriers in an appropriate way as they
spread in the population. Therefore, there is a
possibility that genes which were initially very
successful might not produce the optimal life
cycle when they were at or close to fixation. In this
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Fig. 5. The spread of a dominant allele A through the
population. The y-axis represents the proportion of
alleles, p 4, that are of type A, and this can be converted to
the number of type A, N, by multiplying by 2 x
population size. Note that if population size is fixed, = K,
then the fitness of allele A (as defined in the text) can be
estimated by the per capita rate of increase of

1d

Pa,ie.— ﬂ. This is because F =—

, and

dNA dPA
since Ny = 2K pa, and —— = 2K
A pa dt dt

, it follows that

1 dNa 1

2kdpa _ 1 dpa

NA dt ZKPA dt Pa dt

situation they would still be vulnerable to in-
vasion by other alleles. The only genes not vulner-
able to invasion are those which, at fixation, have a
higher rate of increase than their potential com-
petitors. In other words their competitors, if they
ever did occur in the population, would decline
(i.e. have a negative rate of increase), whereas the
optimal gene, being at or close to fixation, would
have a rate of increase of approximately zero. The
optimal gene would, presumably, have been able
to enter the population since it could spread, if
only very slowly, against near competitors when
the rates of increase of both were close to zero.

Comparisons between approaches
Lifetime reproductive success

Itis proved in Appendix 1 that strategies maximize
F if and only if they maximize lifetime repro-
ductive success, in fixed-size populations (i.e.
with F = 0 for the optimal strategy). However since
optimal strategies usually depend on F (Sibly &
Calow, 1984, 1986a), maximizing lifetime repro-
ductive success will not in general be the same as
maximizing F. Differences would occur, for
example, if a population spent most of its time
growing (positive F) but occasionally experienced
selectively-neutral crashes (cf. ‘r-selection’).

Reproductive value

Maximizing F is in general not the same as
maximizing reproductive value at each age. The
equivalences have been thoroughly treated in a
discrete age-class model by Caswell (1980), using
some general and deep theorems from matrix
algebra, and Caswell’s conclusions have been
checked by Ricklefs (1981), using simpler tech-
niques. This analysis shows that the strategy (i.e.
birth-death schedule) that maximizes F will also
maximize reproductive value at each age only for a
restricted set of trade-off’s.

However, a model devised by Schaffer (1974,
1979, 1981; cf. Yodzis, 1981) shows that, subject to
the assumption outlined below, reproductive
efforts that maximize fitness result in a value of
reproductive effort at age x that maximizes repro-
ductive value at age x, for all x. Reproductive effort
is here defined as the proportion of the resources
available to the animal at a given age that is
allocated to reproduction at that age. The assump-
tion is made that reproductive effort at one age can
affect fecundities and mortality rates at later ages
but not at earlier ages. While this approach is less
widely applicable than the approach of maximiz-
ing fitness, it can be used to analyse an animal’s
options at age x between the various reproductive
efforts open to it. If for each effort the resulting
fecundity at age x, the probability of surviving to
age x + 1, and the ‘residual’ reproductive value (at
age x + 1) are known, then the effort that max-
imizes reproductive value can readily be identi-
fied using the formula:

reproductive value = (fecundity at age x) +
(chance of surviving to age x + 1) X (residual
reproductive value).

This has proved a popular way to discuss repro-
ductive investments since its introduction by
Williams (1966).

Any single fitness component

It is clear intuitively that any allele that increases
fecundity will spread, other fitness components
being held constant. Taking the most general
model, the iteroparous life cycle, consider the
effect, on the rate of spread (F), of increasing
fecundity n, at age t,. Mathematically, we want to

oF
show that F is increased by increasing ny, i.e. —

X
is positive. We use the partial derivative of F with
respect to n; to indicate that the other fitness
components are kept constant.
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Fig. 6. A life-cycle graph for a plant. Ramets are classified into seeds and three size categories in this example (more can
be included if necessary). The transition frequencies a;; between stages are explained further in the text. After Caswell

(1985).

Differentiating equation 7 with respect to n, we
obtain

oF I, e Fi

any - 2 n; Iiti e'Ft'
1

This is necessarily > 0 because each variable in the
right hand side is > 0.

In the same way it can be shown that any allele
that reduces mortality rate at any age will spread,
other fitness components being held constant
(Appendix 2). It is not quite so easy, though, to
show that any allele that reduces age at breeding
will spread, other fitness components (mortality
rates and fecundities) being held constant. How-
ever, Sibly & Calow (1986b) have argued strongly
that this is probably always true in a constant
environment.

In this section we have seen that fitness is
increased by increasing fecundity, decreasing
mortality rate, or, according to Sibly & Calow
(1986b), by breeding earlier, other fitness com-
ponents being held constant. Specifically, F is
increased by increasing n,, decreasing my, or
decreasing i, for any value of x, provided that all
other values of {ni,p, ,»,t,-}‘}=1 are held constant. It
follows that fitness is maximized by maximizing
fecundity, minimizing mortality rate, or breeding
as early as possible, other things being equal.

Fitness of plants

Although the above approach seems adequate for
animals, some plants have altogether more
complex life cycles, because they have alternative
modes of reproduction (vegetative or gametic with
or without sex). Until recently the only way to
approach this problem has been to define a genet
as the individual or clone derived from a single
zygote (Harper, 1977). The size range of individual
genets may therefore extend from a tiny seedling to

a clone extending in fragments over a kilometre.
The life cycle of a genet can then be defined as its
birth/death schedule and the fitness of a gene
coding for a particular genet life cycle can be
derived as before. Births here refer to the produc-
tion of offspring genets, i.e. zygotes. The problem
with this approach is that in some species there is
enormous variability in the life cycles of genets of
the same genotype, especially if the genets are
clones.

A possible solution is to consider the modular
units, of which clones are composed, as the units
subject to selection. These are called ‘ramets’
(Harper, 1977). Examples are leaves, tillers,
rhizomes, stolons, rooting shoots, etc. and what it
is useful to recognize as a ramet will vary between
species. Since ramets are often involved in their
own birth/death processes, the reasons for the
variability in genet life cycle afe evident.

Caswell (1985) has identified a powerful set of
analytical tools designed to deal with this sort of
complexity. His approach is to choose life-cycle
stages appropriate for the study organism, and
these might be seed and ramet, and/or the ramets
might be classified according to size. An example,
classified into seeds and three sizes of ramets, is
shown in Fig. 6. Working in discrete time intervals
there is then a transition frequency (i.e. a prob-
ability, a;;) that seeds or ramets at stage j at time ¢
will turn into ramets at stage I at time ¢t + 1.
Similarly let a,; be the frequency with which
ramets at stage j produce seeds. The transition
matrix (a;) can then be analysed using the
methods of matrix algebra, which apply to the
stage-specific just as to the age-specific case (Cas-
well, 1985). In particular the largest eigen-value
gives the population’s asymptotic growth rate.
Although Caswell does not say so, it is easy to use
his formulation to derive the rate of increase of a
gene, using the methods described above. Speci-
fically, it has to be assumed that at each life-cycle
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stage all carriers of the gene have the same tran-
sition frequencies. As before changes have to be
made to the transition frequency to seeds. Male as
well as female offspring must be counted but the
resulting frequency must be halved because the
chance of a particular allele in the ramet getting
through meiosis into the seed is ¥. All the other
frequencies are unaffected.

This approach gives the rate of increase of a
particular allele because the transition frequencies
between stages give the probabilities that copies of
that allele are transferred between stages. The
largest eigen-value of the transition matrix gives
the growth rate of the gene, and this, or its natural
logarithm, provides a suitable measure of fitness
for the complex life cycles of plants.

Conclusions

I have argued in favour of rate of increase of an
allele as the preferred measure of fitness in life-
cycle studies of what happens in a specified
environment and population. For four simple life
cycles, I have shown how this measure of fitness is
derived. These derivations are subject to the
assumption that all carriers of an allele have the
same life cycle, but computer simulations, which
changed the mode of inheritance, or allowed the
sexes different life cycles or perturbed life-cycle
components stochastically, suggest that pre-
dictions about optimal strategies are robust if
made on the basis of this assumption. The
approach can also be applied to the complex life
cycles of plants, using methods developed by
Caswell (1985). Fitness is maximized by maxi-
mizing fecundity, minimizing mortality rate, or
breeding as early as possible, at each breeding
occasion, provided, in each case, the other fitness
components are held constant. Maximizing life-
time reproductive success is equivalent to maxi-
mizing F in fixed-size populations with F = 0 for
the optimal strategy. Maximizing Fis equivalent to
choosing reproductive effort at each age to maxi-
mize reproductive value at that age, if it can be
assumed that reproductive effort can affect later
fecundities and survivorships but cannot be
traded-off against earlier fecundities and sur-
vivorships.
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Appendix 1

Proof that a strategy maximizes fitness, F, if and only if it
maximizes lifetime reproductive success (LRS), in a
fixed-size population such that F = 0 for the optimal
strategy

Q
Fis defined as in equation 7 and LRS = %2 3 I; n;.
i=1

When a gene has reached fixation in a fixed-size popu-
lation, F = 0, and then LRS = 1.

Consider two genes, A and B, with fitnesses Fa and Fg,
and lifetime reproductive successes LRS, and LRSg.
Suppose F5 = 0 and LRS, = 1. Fy is given by

1= 2 e_FB'B’ IBi nNgy;
i

Equation A1

and LRSg = V2 2 Ig; ng; Equation A2
1
I prove first that Fg < F4  LRSg < LRSa. Since Fo =0
and LRS, = 1, this is equivalent to proving that Fg < 0
> LRSp <1.Sincet>0, Fg <0 > e 8% > 1 forall tg; >
0, > e B ;. ng; > Ig; ng; for all ¢, since Ig; and ng; > 0,
> Yo 3 e BB [y, ng; > 14 3, Ig; ng; > 1 > LRSp by
1

i
equations A1 and A2.

I now prove by contradiction that LRSg <LRS, > Fy
< Fj, or equivalently that LRSy < 1 & Fg < 0. Thus
suppose that LRSg <1and Fg=0.Fg=0> e <1>
e BB <1 forall ty;> 0, > V2S e ™8 [y, ng, < Y 3 Ig; ng;

1

> 1 < LRSg, contradiction. !

Appendix 2

Proof that fitness is increased by reducing a mortality
rate

For this analysis it is attractive to describe the life cyle by
independent variables (see p.130). Such a description
can be obtained for the general iteroparous case as
follows. Let T, = t,,7, =t, — t1,73 = t3 — t,,and so on, so
that ; refers to the period between the (i~1)th and the ith
breeding. Let p; be the mortality rate during this period

i
Thus t, = > Tj

Equation A3
j=1
And l; =e ™™ X e M2 X, X e WM
- 21 W .
=e’ Equation A4
Q 1
. = 2 (Fty)
Equation 7 now becomes 1 =% 3 e /=1 " n;
i=1
Equation A5

Taking partial derivatives with respect to p, holding 7;
and n; constant for all i, and holding p; constant for i # x,
we obtain

Q L i dF
0=—-% 3% e—)zl(F+u,)‘r,< 3 _Tl')ﬂj
i=1 j:

Q 1
— 3 (F+p)T,
-% 3 e I=1( M’))Txni
i=x

Equation A6

Rearranging,

Q

S e P lg.n;

=X

=- —— Equation A7

Q
3 e FuLtn;

Since e ™%, I;, 7;and n; are all necessarily > 0fori=1...

JF
Q, it follows that—6 <Oforallx=1...Q.
‘LX
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