HiOOS Data Management and Communications (DMAC)

John Maurer
Data System Administrator
Hawaii Ocean Observing System (HiOOS.org)
School of Ocean and Earth Science and Technology (SOEST)
University of Hawai‘i at Mānoa

August 2010
data
servers
metadata
services
viewers
data, servers, metadata, services, viewers
NetCDF: Network Common Data Form
NetCDF: Network Common Data Form

- **time series:**
 - nearshore sensors
 - water quality buoys
 - tide gauges
 - gliders
 - high frequency radios
 - forecast models

HiOOS - Hawai‘i Ocean Observing System

john.maurer@hawaii.edu
data servers metadata services viewers

NetCDF: Network Common Data Form

time series:
- nearshore sensors
- water quality buoys
- tide gauges
- gliders
- high frequency radios
- forecast models
 - ocean circulation
 - ocean waves
 - atmosphere

john.maurer@hawaii.edu
data servers metadata services viewers

NetCDF: Network Common Data Form

time series:
nearshore sensors
water quality buoys
tide gauges

ROMS: Regional Ocean Modeling System
SWAN: Simulating WAves Nearshore
WRF: Weather Research and Forecasting

NWW3: NOAA/NCEP WaveWatch III
GFS: NOAA/NCEP Global Forecast System

forecast models
ocean circulation
ocean waves
atmosphere

john.maurer@hawaii.edu
Structured grids:

Regular grids:

- Cartesian grid
- Rectilinear grid

Irregular grids:
- Curvilinear grid

Unstructured grids:

- [Image of unstructured grid]
- [Image of another unstructured grid]
- [Image of a third unstructured grid]
Structured grids:

Regular grids:
- Cartesian grid: linear, unvarying
- Rectilinear grid: linear, but varying in one dimension

Irregular grids:
- Curvilinear grid: linear, but varying in two dimensions

Unstructured grids:
- Connection between points must be explicitly defined; cannot be computed
- Complex, difficult, manual, but much more flexible

i & j are integer array indices ("index space")
map to
x & y are floating point lat/lon coordinates ("coordinate space")

Examples:
- Squares
- Rectangles
- Quadrilateral polygons: quadrangles or tetragons
- Triangles

Equations:
- Cartesian grid: \(x = i \), \(y = j \)
- Rectilinear grid: \(x = i \times \text{transform} \), \(y = j \times \text{transform} \)
- Curvilinear grid: \(x = (i \times \text{transform}) + (j \times \text{transform}) \), \(y = (i \times \text{transform}) + (j \times \text{transform}) \)
NetCDF: Network Common Data Form

time series:

- nearshore sensors
- water quality buoys
- tide gauges
- gliders
- high frequency radios
- forecast models

- point
- trajectory
- radial
- grid

john.maurer@hawaii.edu
TDS: THREDDS Data Server

Thematic Realtime Environmental Distributed Data Services
data servers metadata services viewers

TDS: THREDDS Data Server

Thematic Realtime Environmental Distributed Data Services

• data catalog: organize and present your NetCDF data in one place
• virtual aggregations: more than a simple file server
• modifications to data/metadata via NetCDF Markup Language (NcML)
TDS: THREDDS Data Server

Thematic Realtime Environmental Distributed Data Services

- data catalog: organize and present your NetCDF data in one place
- virtual aggregations: more than a simple file server
- modifications to data/metadata via NetCDF Markup Language (NcML)

Dapper

- used for DChart and ERDDAP viewers
- specifically for NetCDF point data
data servers metadata services viewers

TDS: THREDDS Data Server

- data catalog: organize and present your NetCDF data in one place
- virtual aggregations: more than a simple file server
- modifications to data/metadata via NetCDF Markup Language (NcML)

Dapper

- used for DChart and ERDDAP viewers
- specifically for NetCDF point data

OOS Tethys

- Sensor Observation Service (SOS)
- specifically for NetCDF point data

john.maurer@hawaii.edu
data servers metadata services viewers

john.maurer@hawaii.edu
• descriptive information: who, what, when, where, why, how
• standardized vocabularies
• machine-readable format (XML)
• enable community-wide search and discovery
THREDDS Dataset Inventory Catalog Specification

- presents metadata on TDS catalog page
THREDDS Dataset Inventory Catalog Specification
- presents metadata on TDS catalog page

CF: NetCDF Climate and Forecast Metadata Convention
- global attributes + standard variable names + standard data organization + etc.
THREDDS Dataset Inventory Catalog Specification
• presents metadata on TDS catalog page

CF: NetCDF Climate and Forecast Metadata Convention
• global attributes + standard variable names + standard data organization + etc.

NetCDF Attribute Convention for Dataset Discovery
• global attribute fields
THREDDS Dataset Inventory Catalog Specification
- presents metadata on TDS catalog page

CF: NetCDF Climate and Forecast Metadata Convention
- global attributes + standard variable names + standard data organization + etc.

NetCDF Attribute Convention for Dataset Discovery
- global attribute fields

ISO 19115-2: Geographic Information – Metadata
- international standard; will be auto-generated from the above standards
data servers metadata services viewers

• standard protocols for accessing data over HTTP
• data accessed via URL; customize result via parameter values:
 REST = Representational State Transfer
• import data directly into user’s software client (Matlab, ArcGIS, etc.)
• enable community-wide data interoperability

john.maurer@hawaii.edu
OPeNDAP: Open-source Project for a Network Data Access Protocol
• subset data via index ranges (e.g. [start:stride:stop], [0:5:50]); get ASCII or binary
OPeNDAP: Open-source Project for a Network Data Access Protocol
- subset data via index ranges (e.g. [start:stride:stop], [0:5:50]); get ASCII or binary

NetCDF Subset Service
- subset gridded data via lat/lon, time, and/or depth; get ASCII, XML, or NetCDF
OPeNDAP: Open-source Project for a Network Data Access Protocol
• subset data via index ranges (e.g. [start:stride:stop], [0:5:50]); get ASCII or binary

NetCDF Subset Service
• subset gridded data via lat/lon, time, and/or depth; get ASCII, XML, or NetCDF

WMS: Web Map Service
• for gridded data, get image (JPG, PNG, GIF, KMZ); specify projection, space, time, etc.
WCS: Web Coverage Service
- for gridded data, get GeoTIFF; specify projection, space, time, resolution, etc.

WMS: Web Map Service
- for gridded data, get image (JPG, PNG, GIF, KMZ); specify projection, space, time, etc.

NetCDF Subset Service
- subset gridded data via lat/lon, time, and/or depth; get ASCII, XML, or NetCDF

OPeNDAP: Open-source Project for a Network Data Access Protocol
- subset data via index ranges (e.g. [start:stride:stop], [0:5:50]); get ASCII or binary

john.maurer@hawaii.edu
data servers metadata services viewers

OPeNDAP: Open-source Project for a Network Data Access Protocol
- subset data via index ranges (e.g. [start:stride:stop], [0:5:50]); get ASCII or binary

NetCDF Subset Service
- subset gridded data via lat/lon, time, and/or depth; get ASCII, XML, or NetCDF

WMS: Web Map Service
- for gridded data, get image (JPG, PNG, GIF, KMZ); specify projection, space, time, etc.

WCS: Web Coverage Service
- for gridded data, get GeoTIFF; specify projection, space, time, resolution, etc.

SOS: Sensor Observation Service
- for point data, get XML (**O&M**); specify space, time, etc.
data servers metadata services viewers

OPeNDAP: Open-source Project for a Network Data Access Protocol

NetCDF Subset Service

WMS: Web Map Service

WCS: Web Coverage Service

SOS: Sensor Observation Service
LAS: Live Access Server

- view gridded data: produce maps and plots; animate, compare, Google Earth, download
LAS: Live Access Server
• view gridded data: produce maps and plots; animate, compare, Google Earth, download

DChart: Dapper Chart
• view point or gridded data: dynamic plots or maps; download; Google Maps/Earth
LAS: Live Access Server
- view gridded data: produce maps and plots; animate, compare, Google Earth, download

DChart: Dapper Chart
- view point or gridded data: dynamic plots or maps; download; Google Maps/Earth

ERDDAP: Environmental Research Division’s Data Access Program
- view/download gridded data or download point data; get table; embed elsewhere
ERDDAP > griddap > Make a Graph

Dataset Title: Simulating Waves Nearshore (SWAN) Regional Wave Model: Oahu
Dataset ID: SWAN_Oahu_Best
Institution: University of Hawai‘i
Information: Summary | Variables | Background | Data Access Form

Graph Type: surface
X Axis: longitude
Y Axis: latitude
Color: mdr

Dimension Ranges
- time (UTC)
- altitude (m)
- latitude (degrees_north)
- longitude (degrees_east)

Graph Settings
- Color Bar:
- Continuity:
- Scale:

Redraw the Graph

Then set the File Type: htmlTable and Download the Data or an Image
or view the URL: http://oos.soest.hawaii.edu/erddap/griddap/SWAN_Oahu_f

Things You Can Do With Your Graphs
- Web page authors can embed a graph of the latest data in a web page using HTML tags.
- Anyone can use Slide Sorter to build a personal web page that displays graphs of the latest data, each in its own, draggable slide.
- Anyone can use or make Google Gadgets to display images with the latest data on their Goggle home page.
data servers metadata services viewers

LAS: Live Access Server
- view gridded data: produce maps and plots; animate, compare, Google Earth, download

DChart: Dapper Chart
- view point or gridded data: dynamic plots or maps; download; Google Maps/Earth

ERDDAP: Environmental Research Division’s Data Access Program
- view/download gridded data or download point data; get table; embed elsewhere

Google Maps API and Google Earth
- HiOOS Data Viewer: one application for viewing all our data, plus others (in progress)
future directions

- Google Maps API Version 3
- add **HFR** and models to HiOOS Data Viewer (*+ lots others...*)
- add data plots to info pop-ups in HiOOS Data Viewer
- next LAS version will allow vector plots
- explore ncWMS and Godiva2
- webapp to monitor system health: data + servers + services
- finish adding metadata in TDS
- mobile devices?
John Maurer
john.maurer@hawaii.edu
Data System Administrator
Hawaii Ocean Observing System (HiOOS.org)
School of Ocean and Earth Science and Technology (SOEST)
University of Hawai‘i at Mānoa
Forecast Model Run Collection (FMRC)

1. **run time** = start of the model run (i.e. when it was kicked off) (a.k.a. **analysis time** or **generating time**)
2. **forecast time** = the time series that the model produces; can be a forecast, nowcast, or hindcast (a.k.a. **valid time**)
3. **forecast offset** or **forecast hour** = difference between run time and forecast time

2D Time Coordinates:

The forecast times vary for each run time, so an FMRC by definition has 2D time coordinates:

```plaintext
String runtime(run=8);
  :long_name = "Run time for model";
  :standard_name = "forecast_reference_time";
  :_CoordinateAxisType = "RunTime";
  data: "2006-09-05T12:00:00Z", "2006-09-06T12:00:00Z", "2006-09-07T12:00:00Z", "2006-09-08T12:00:00Z", "2006-09-09T12:00:00Z", "2006-09-10T12:00:00Z", "2006-09-11T12:00:00Z", "2006-09-12T12:00:00Z"

double time(run=8, time=16);
  :units = "hours since 2006-09-05T12:00:00Z";
  :long_name = "forecast (valid) time";
  :standard_name = "time";
  :_CoordinateAxisType = "Time";
  data: 
  {90.0, 96.0, 102.0, 108.0, 114.0, 120.0, 126.0, 132.0, 138.0, 144.0, 150.0, 156.0, 162.0, 168.0, 174.0, 180.0}, 
  {114.0, 120.0, 126.0, 132.0, 138.0, 144.0, 150.0, 156.0, 162.0, 168.0, 174.0, 180.0}, 
  {138.0, 144.0, 150.0, 156.0, 162.0, 168.0, 174.0, 180.0}, 
  {156.0, 162.0, 168.0, 174.0, 180.0}, 
  {174.0, 180.0}, 
  {198.0, 204.0}, 
  {212.0, 218.0, 224.0, 230.0, 236.0, 242.0, 248.0, 254.0, 260.0, 266.0, 272.0, 278.0, 284.0, 290.0, 296.0, 302.0, 308.0, 314.0, 320.0, 326.0, 332.0, 338.0, 344.0, 350.0}
```

Each data variable will have both run time and forecast time dimensions: e.g. `float temp(run,time,depth,lat,lon);`

1D Time Coordinates:

TDS can be used to create different views/slices of an FMRC on a single time axis:

1. **run time:**
 - **Forecast Model Run** = the time series (forecast times) for a particular model run (run time)
2. **forecast time:**
 - **Best Time Series** = the time series (forecast times) constructed from the most recent model run available
 - **Constant Forecast Date** = data with the same forecast time across different model runs (run times)
3. **forecast offset or forecast hour:**
 - **Constant Forecast Offset** = data for the same forecast offset or forecast hour (e.g. 0 hour, +6 hour, etc.) across different model runs
Forecast Model Run = time series (forecast times) for a particular model run (runtime)
1D Time Coordinates:

Constant Forecast Date = data with same forecast time across different model runs

NOTE: final timestamp = nowcast (runtime = forecast time)

NOTE: successively shorter forecasts
Constant Forecast Offset = data for same forecast offset (e.g. +1 day, +6 hours, etc.) across different model runs.

1D Time Coordinates:
Best Time Series = time series from most recent model run available = all nowcasts (+0 offset) + latest model forecasts (right column)