ICS141: Discrete Mathematics for Computer Science I

Dept. Information & Computer Sci., University of Hawaii

Jan Stelovsky
based on slides by Dr. Baek and Dr. Still
Originals by Dr. M. P. Frank and Dr. J.L. Gross
Provided by McGraw-Hill
Lecture 7

Chapter 1. The Foundations
1.6 Introduction to Proofs

Chapter 2. Basic Structures
2.1 Sets
Proof Terminology

- A proof is a valid argument that establishes the truth of a mathematical statement.

- **Axiom** (or postulate): a statement that is assumed to be true.

- **Theorem**: A statement that has been proven to be true.

- **Hypothesis, premise**: An assumption (often unproven) defining the structures about which we are reasoning.
More Proof Terminology

- **Lemma**
 - A minor theorem used as a stepping-stone to proving a major theorem.

- **Corollary**
 - A minor theorem proved as an easy consequence of a major theorem.

- **Conjecture**
 - A statement whose truth value has not been proven. (A conjecture may be widely believed to be true, regardless.)
Proof Methods

- For proving a statement p alone
 - *Proof by Contradiction* (indirect proof):
 Assume $\neg p$, and prove $\neg p \rightarrow F$.

Proof Methods

For proving implications $p \rightarrow q$, we have:

- **Trivial proof**: Prove q by itself.
- **Direct proof**: Assume p is true, and prove q.
- **Indirect proof**:
 - **Proof by Contraposition** ($\neg q \rightarrow \neg p$): Assume $\neg q$, and prove $\neg p$.
 - **Proof by Contradiction**: Assume $p \land \neg q$, and show this leads to a contradiction. (i.e. prove $(p \land \neg q) \rightarrow F$)
- **Vacuous proof**: Prove $\neg p$ by itself.
Definition: An integer n is called odd iff $n=2k+1$ for some integer k; n is even iff $n=2k$ for some k.

Theorem: Every integer is either odd or even, but not both.
- This can be proven from even simpler axioms.

Theorem:
(For all integers n) If n is odd, then n^2 is odd.

Proof:
If n is odd, then $n = 2k + 1$ for some integer k.
Thus, $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$.
Therefore n^2 is of the form $2j + 1$ (with j the integer $2k^2 + 2k$), thus n^2 is odd. ■
Proof by Contraposition

Theorem: (For all integers \(n \))
If \(3n + 2 \) is odd, then \(n \) is odd.

Proof:
(Contrapositive: If \(n \) is even, then \(3n + 2 \) is even)
Suppose that the conclusion is false, i.e., that \(n \) is even.
Then \(n = 2k \) for some integer \(k \).
Then \(3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1) \).
Thus \(3n + 2 \) is even, because it equals \(2j \) for an integer \(j = 3k + 1 \).
So \(3n + 2 \) is not odd.
We have shown that \(\neg(n \text{ is odd}) \rightarrow \neg(3n + 2 \text{ is odd}) \),
thus its contrapositive \((3n + 2 \text{ is odd}) \rightarrow (n \text{ is odd}) \) is also true. ■
Vacuous Proof Example

- Show \(\neg p \) (i.e. \(p \) is false) to prove \(p \rightarrow q \) is true.

- **Theorem:** (For all \(n \)) If \(n \) is both odd and even, then \(n^2 = n + n \).

- **Proof:**
 The statement “\(n \) is both odd and even” is necessarily false, since no number can be both odd and even. So, the theorem is vacuously true. ■
Trivial Proof Example

- Show \(q \) (i.e. \(q \) is true) to prove \(p \to q \) is true.

- **Theorem**: (For integers \(n \)) If \(n \) is the sum of two prime numbers, then either \(n \) is odd or \(n \) is even.

- **Proof**:

 Any integer \(n \) is either odd or even. So the conclusion of the implication is true regardless of the truth of the hypothesis. Thus the implication is true trivially. ■
Proof by Contradiction

 - Assume $\neg p$, and prove both q and $\neg q$ for some proposition q. (Can be anything!)
 - Thus $\neg p \rightarrow (q \land \neg q)$
 - $(q \land \neg q)$ is a trivial contradiction, equal to F
 - Thus $\neg p \rightarrow F$, which is only true if $\neg p = F$
 - Thus p is true
Rational Number

Definition:
The real number \(r \) is *rational* if there exist integers \(p \) and \(q \) with \(q \neq 0 \) such that \(r = \frac{p}{q} \). A real number that is not rational is called *irrational*.
Proof by Contradiction

- **Theorem:** $\sqrt{2}$ is irrational.
- **Proof:**

 Assume that $\sqrt{2}$ is rational. This means there are integers x and y ($y \neq 0$) with no common divisors such that $\sqrt{2} = x/y$.

 Squaring both sides, $2 = x^2/y^2$, so $2y^2 = x^2$. So x^2 is even; thus x is even (see earlier).

 Let $x = 2k$. So $2y^2 = (2k)^2 = 4k^2$. Dividing both sides by 2, $y^2 = 2k^2$. Thus y^2 is even, so y is even.

 But then x and y have a common divisor, namely 2, so we have a contradiction.

 Therefore, $\sqrt{2}$ is irrational. \blacksquare
Proof by Contradiction

- Proving implication $p \rightarrow q$ by contradiction
 - Assume $\neg q$, and use the premise p to arrive at a contradiction, i.e. $(\neg q \land p) \rightarrow F$

 \[
 (p \rightarrow q \equiv (\neg q \land p) \rightarrow F)
 \]

- How does this relate to the proof by contraposition?

- Proof by Contraposition $(\neg q \rightarrow \neg p)$:
 Assume $\neg q$, and prove $\neg p$.
Proof by Contradiction

Example: Implication

Theorem: (For all integers n)
If $3n + 2$ is odd, then n is odd.

Proof:
Assume that the conclusion is false, i.e., that n is even, and that $3n + 2$ is odd.

Then $n = 2k$ for some integer k and $3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1)$. Thus $3n + 2$ is even, because it equals $2j$ for an integer $j = 3k + 1$.

This contradicts the assumption “$3n + 2$ is odd”.

This completes the proof by contradiction, proving that if $3n + 2$ is odd, then n is odd. ■
Circular Reasoning

- The fallacy of (explicitly or implicitly) assuming the very statement you are trying to prove in the course of its proof. Example:

- Prove that an integer n is even, if n^2 is even.

- Attempted proof:
 Assume n^2 is even. Then $n^2 = 2k$ for some integer k.
 Dividing both sides by n gives $n = (2k)/n = 2(k/n)$.
 So there is an integer j (namely k/n) such that $n = 2j$.
 Therefore n is even.

- Circular reasoning is used in this proof.

Begs the question: How do you show that $j = k/n = n/2$ is an integer, without first assuming that n is even?
Chapter 2

Basic Structures:
Sets, Functions, Sequences, and Sums
2.1 Sets

- A **set** is a new type of structure, representing an *unordered* collection (group) of zero or more *distinct* (different) objects. The objects are called *elements* or *members* of the set.

 - Notation: \(x \in S \)

- Set theory deals with operations between, relations among, and statements about sets.

- Sets are ubiquitous in computer software systems.

 - (E.g. data types **Set**, **HashSet** in **java.util**)
Basic Notations for Sets

- For sets, we’ll use variables S, T, U, ...
- We can denote a set S in writing by listing all of its elements in curly braces:
 - \{a, b, c\} is the set whose elements are a, b, and c
- **Set builder notation**:
 - For any statement $P(x)$ over any domain,
 - $\{x \mid P(x)\}$ is *the set of all x such that $P(x)$ is true*
 - Example: \{1, 2, 3, 4\}
 - = \{x \mid x \text{ is an integer where } x > 0 \text{ and } x < 5 \}
 - = \{x \in \mathbb{Z} \mid x > 0 \text{ and } x < 5 \}
Basic Properties of Sets

- Sets are inherently *unordered*:
 - No matter what objects a, b, and c denote,
 $$\{a, b, c\} = \{a, c, b\} = \{b, a, c\} = \{b, c, a\} = \{c, a, b\} = \{c, b, a\}.$$

- All elements are *distinct* (unequal); multiple listings make no difference!
 - If $a = b$, then $\{a, b, c\} = \{a, c\} = \{b, c\} = \{a, a, b, a, b, c, c, c, c\}$.
 - This set contains (at most) 2 elements!
Definition of Set Equality

- Two sets are declared to be equal if and only if they contain exactly the same elements.

- In particular, it does not matter how the set is defined or denoted.

Example:
The set \{1, 2, 3, 4\}
\hspace{1cm} = \{x \mid x \text{ is an integer where } x > 0 \text{ and } x < 5\}
\hspace{1cm} = \{x \mid x \text{ is a positive integer where } x^2 < 20\}
Infinite Sets

- Conceptually, sets may be *infinite* (i.e., not *finite*, without end, unending).

- Symbols for some special infinite sets:
 \(N = \{0, 1, 2, \ldots\} \) the set of *Natural* numbers.
 \(Z = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \) the set of *Integers*.
 \(Z^+ = \{1, 2, 3, \ldots\} \) the set of positive integers.
 \(Q = \{p/q \mid p, q \in Z, \text{ and } q \neq 0\} \) the set of *Rational* numbers.
 \(R = \text{the set of “Real” numbers.} \)

- “Blackboard Bold” or double-struck font is also often used for these special number sets.