Hawai'i Cooperative Extension Service

HITAHR · College of Tropical Agriculture & Human Resources · University of Hawai'i at Manoa · U.S.D.A. Cooperating

VEGETABLE CROPS UPDATE

Volume 5

March 1995

Letters from Molokai

Results from cultivar and cultural trials with vegetable crops conducted at the Molokai Applied Research and Demonstration Farm. Alton Arakaki and Hector Valenzuela

Overview

Cultivar and cultural trials with horticultural crops are conducted on an ongoing basis at the Molokai Applied Research and Demonstration Farm by University of Hawaii Cooperative Extension Agents. Results are reported through field days and extension leaflets distributed to local producers. However, the results of some of these trials are applicable to producers state-wide, especially for those growing vegetables in areas with environmental conditions similar to those found in Molokai. For more information on any of these trials please contact Alton Arakaki, CES Molokai at 808-567-6833, or H. Valenzuela, UH Manoa at 808-956-7903.

Cucumber variety trials in Molokai

Alton Arakaki and Hector Valenzuela

Spring 1987. Trials were conducted to evaluate slicing cucumber production during the Spring growing season in Molokai. All trials were conducted at the Molokai Applied Research and Demonstration Farm. For the first trial cucumber was seeded on Feb. 17, transplanted on March 9 and harvested from April 4 to May 12, 1987. Plant spacing was 1 ft between plants in the row and 5 ft between rows for a final 8,680 plants/Acre density. The crop received 1000 lbs/Acre 10-30-10 at pre-plant and was post-plant fertigated with 10-18 lbs/Acre of 12-26-26 every other week up to the 4th week of harvest. The trial consisted of three replications under trellis- and one replication under ground-culture. Varieties used are listed in Table Cu-1, and trial results in Tables Cu-2 (trellis) and Cu-3 (ground culture).

The top three yielding cultivars during the month long harvest for the trellised trials were 'AC #1810', the UH variety 'Ohia', and 'Slicenice'. All yielded over 75,000 lbs/Acre at populations of 8,680 plants/Acre. Percent Grade A Fruits were over 55% for these three varieties while percentage of OGs or culls was below 30% while this value for the lower yielders (Table Cu-2) was above 40%, with the

exception of 'NVH-829'. The top three yielding cultivars in the ground-culture trial were 'Slicenice', 'Ohia', and 'NVH 829'. Therefore 'Slicenice' and the UH variety 'Ohia' performed well under both trellis- and ground-cultures. Overall for the lower-yielding varieties yield was reduced by 45% and for the high yielding ones by 33% when grown in the ground compared to trellis-culture (Table Cu-3). Fruit quality was also higher for cucumbers grown under trellis with an average 52% of Grade A fruit compared to 36% for plants in ground culture. For commercial production growers thus have to evaluate the benefits of trellising including improved fruit quality, harvest efficiency, and easier pest management (by improving better aeration and possibly lower disease pressure, and by achieving better foliage coverage with pesticide applications), compared to the costs of placing the trellises.

Spring 1990. Plants were seeded on Jan. 18, transplanted on Feb. 5, and harvested for about 3 weeks from March 13 to April 9, 1990. Plant spacing was 1 ft between plants in the row and 5 ft between rows for a final 8,680 plants/Acre density. Total plants per cultivar in the trial were 210 with 15 plants per plot. The crop received 800 lbs/Acre 10-20-20 at pre-plant and was fertigated beginning 2 weeks after planting with 20 lbs/Acre of 20-20-20 every other week up to the 4th week of harvest. Vydate at 1 gal/Acre was applied 1 week prior to transplanting for nematode control. Poast was applied for weedy grass control. Bayleton was applied for powdery mildew, and benlate for an-thracnose control. The pickling varieties tested mature at about 55 days after planting.

No. 2

Results are shown in Table Cu-4. The top yielding varieties for this trial were 'Sweet Slice', 'Blitz', 'Burpeeana II', 'VGD-6054', and 'Raider'. Of the top varieties, the slicing type 'Sweet Slice' and the pickling-types 'Blitz', and 'Triplemech' had the higher percentage of high quality Grade A fruit at >50% of total yields (Table Cu-4). 'Slicenice'

COOPERATIVE EXTENSION SERVICE · 3050 MAILE WAY · UNIVERSITY OF HAWAI'I · HONOLULU, HAWAI'I 96822

The University of Hawai[•]i at Manoa, College of Tropical Agriculture and Human Resources, Cooperative Extension Service, U.S. Department of Agriculture cooperating in presenting to the people of Hawai[•]i programs and services without regard to race, color, national origin, sex or disability. It is an Equal Opportunity and Affirmative Action Employer.

Results are shown in Table Cu-4. The top yielding varieties for this trial were 'Sweet Slice', 'Blitz', 'Burpeeana II', 'VGD-6054', and 'Raider'. Of the top varieties, the slicing type 'Sweet Slice' and the pickling-types 'Blitz', and 'Triplemech' had the higher percentage of high quality Grade A fruit at >50% of total yields (Table Cu-4). 'Slicenice' which was also tested in 1987, also was among the higher yielders in this trial which indicates its possible adaptability to Molokai with potentials for commercial production and stable yields. In your farm first grow new cultivars on a small scale at least for a couple of seasons to evaluate local adaptability, and to get acquainted with its particular cultural requirements, prior to increasing planting acreage significantly.

Standard cucumber varieties grown in Hawaii include 'Burpee Hybrid II', 'New Market #2', 'Sweet Slice Hybrid', 'Lani' and 'Hilo' UH hybrids, 'Dasher II', 'Sakata #69', and 'Slicemaster'. Other for-trial varieties which look promising include 'Genuine', 'Spring Swallow', 'Soarer', 'Southern Delight', 'Pegasus', Green Knight', 'Tokyo Slicer', 'Conquistador', and 'Brocade.'

Table Cu-1. Cucumber varieties evaluated for production in Molokai, Spring, 1987.

Variety D	isease tolerance	Seed source	
AC #1810	1, 3, 4, 5, 6	Abbott	
Spring 442/Pollinator	3, 4	Asgrow	
XPH1187		Asgrow	
Slice Nice	1,2,3,4,5,6	Arco	
Castlehy 2512		Arco	
Castlemaster		Arco	
NVH 2100 (Monarch)	1,2,3,4,5,6	Northrup King	
NVH 829	3,4	Northrup King	
Ohia	7	U.H.	
Milo	7	U.H.	
1. Angular leaf spot	4. Cu	cumber Mosaic Virus	
2. Anthracnose	5. Cu	cumber Scab	
3. Powdery mildew	6. Do	owny mildew	
	7. W	MV II	

Table Cu-2.Trellised cucumber cultivar yields in Molokai, Spring, 1987.

Cultivar	Total yields	Marketable yields	Percent	Percent	Percent	Percent	
	(lbs/Acre)	(lbs/Acre)	Grade A Fruits	Grade B Fruits	Off-grade	Culls	
Higher Yielders							
AC #1810	106,722	84,361	68	11	20	1	
Ohia	106,286	78,408	59	15	26	0	
Slicenice	110,207	78,335	57	14	29	0	
NVH 2100	102,511	72,454	54	16	29	0.4	
Spring 442/Pollinator	103,891	71,583	49	20	31	.5	
XPH11 87	108,392	71,075	52	13	34	0	
Lower Yielders							
Castlemaster	90,968	52,635	45	13	42	0	
Milo	94,598	51,909	43	11	45	0.5	
NVH 829	78,858	51,197	50	15	35	0	
Castlehy 2512	82,546	47,988	45	13	42	.2	

Table Cu-3. Ground culture cucumber cultivar yields in Molokai, Spring, 1987.

Cultivar	Total yields	Marketable yields	Percent	Percent	Percent	Percent	Ground/
	(lbs/Acre)	(lbs/Acre)	Grade A Fruits	Grade B Fruits	Off-grade	Culls	Trellis
							(%)
Higher Yielders							
SliCenice	101,495	55,756	40	14	45	0	71
Ohia	107,152	50,529	39	8	52	1	64
NVH 829	89,734	44,866	32	18	49	1	88
NVH 2100	78,190	44,431	44	13	42	0.8	8 61
AC #1810	67,736	43,995	56	9	34	1	52
Lower Yielders							
XPH1187	89,734	41,599	36	10	52	1	58
Sprint 442	97,574	38,896	25	14	59	0.9) 54
Castlemaster	70,132	34,630	36	14	49	1	66
Milo	82,546	26,136	24	8	66	2	50
CastlHy 2512	46,174	25,700	32	23	44	0	53

Cultivar	Source	Total yields	Percent	Percent	Percent	Percent	
		(lbs/Acre)	Grade A Fruits	Grade B Fruits	Off-grade	Culls	
Higher Yielders							
Sweet Slice	Peto	2,078	51	7	33	8	
Blitz	Peto (pickling	() 2,001	62	0	26	11	
Burpeeana II	Burpee	1,970	39	6	53	3	
VGD-6054	Asgrow	1,846	43	7	39	11	
Raider	Harris	1,825	35	3	48	14	
Slicenice	ARCO	1,773	37	7	47	8	
Triplemech	Peto (pickling		66	4	23	6	
Maximore 102	Abbott	1,721	38	0	57	5	
Lower Yielders							
Gemini 7	Peto	1,597	65	3	27	5	
Lani	UH	1,587	45	0	47	8	
Milo	UH	1,587	47	3	47	3	
VGD-6165	Asgrow	1,555	46	3	51	0	
Amira II	Peto	1,504	27	5	59	8	
Supersett	Peto	1,441	39	6	52	4	
Dasher II	Peto	1,358	29	11	46	14	
Calypso	Abbott	1,286	52	10	28	10	
Armada	Peto	1,255	67	0	33	0	
Maximore 100	Abbott	1,244	56	9	35	0	
Exp. Hybrid 474b	Harris	1,213	43	0	53	4	
Cherokee	Sun	1,172	65	0	33	0	
Dynasty	Peto	1,151	58	0	31	11	

Recommended Cultural Practices for Cucumber Production in Molokai.

1. Seeding. Seed in trays, transplant just before the seedling roots fill the tray cell, approximately 14-16 days after seeding. Seeds can also be direct seeded, 2 seeds per hill. All seed should be treated with a fungicide but most commercial seed is pre-treated.

2. Mulch. Mulch rows with 3-4 feet plastic mulch.

3. Irrigation. Drip tube beneath the plastic mulch.

4. Trellis and netting. Use 6'6" metal tee, placed 10 ' apart in rows, and through mulch 11 gauge wire with nylon mesh net, 2 strands of wire are used to stretch the netting.

5. Plant spacing. 12-18 inches between plants, 5-6 feet between rows.

6. Fertilization. Preplant 800-1000 lbs/Acre 10-30-10 placed under mulch. Liquid feed through the irrigation system, 10-15 lbs/ Acre 20-20-20 every other week.

7. Training vines on trellis. Vines should be placed or trained on trellis netting at least 3 times per week and daily during periods of vigorous growth.

8. Pest Control. Insecticide treatments may be required for leafminers, whiteflies, thrips and aphids. Inspect plants for presence of insects before spraying. Even if insects are present it does not mean they will cause economic damage. Try as much as possible to gauge their density, and spray

accordingly, to maintain an insect population density below economic damage levels.

Remember: there is a population of beneficial insects in the field most of the time, helping to control harmful insects. It has been documented that insects DO develop resistance to persistently applied chemicals. Some scholars believe that it is only a matter of time before insects build resistance to particular insecticides.

Fungicide treatments may be required for powdery mildew management.

9. Irrigation. When the first fruit has formed, water moisture in the soil must be maintained close to field capacity at all times. Cucumbers have high water demand during fruit production. Approximately 93-97 percent of the fruit is water plus transpiration rates are high during this active growing state.

10. Harvest. During peak periods pick daily. At other times harvest is conducted at no less than every other day. It is important to remove all mature and damaged fruits from the plants all the time, in order to maintain plant vigor.

Broccoli Cultivar Trials in Molokai

Alton Arakaki and Hector Valenzuela

Most of the broccoli consumed in Hawaii is imported from the continental U.S. Five trials were conducted in Molokai to evaluate the yield of several commercial cultivars during the Spring, Summer, Fall, and Winter.

Spring Experiment, 1986

Nine varieties were evaluated. The trial had 3 replications and 9 plants per replication. The crop was seeded in March 25 and transplanted on April 22, 1986. The planting arrangement was a double row-staggered planting with 2 ft between plants in the row, 2.5 feet between rows, and 3 ft between plots for a density of 5,787 plants/ Acre. The plots received pre-plant 1000 lbs/Acre 10-30-10 and at post-planting side-dressed 640 lbs/Ac of calcium nitrate. Results are shown in Table B-1. In this trial all varieties were affected by hollow stem except 'Top Star', which showed the highest yield. 'Aux. 7901' heads were non uniform in size and shape. 'Cape Queen' heads varied in size and tended to be lumpy. 'DeCicco' had a long stem and small flat heads that were fluffy and uneven. 'Futura' had a dome-shaped head.

Summer Experiment

Plants were seeded on April 5 and transplanted on May 2, 1989. Spacing was 0.75 ft between plants and 3.5 ft between rows for a density of 16,596 plants/Acre. Total number of plants per variety in the trial was 45. Land preparation included plow, disc, pre-plant fertilizer application, and drip line laying. Pre-plant fertilizer rates were 1000 lbs/Acre of 10-30-10, and calcium nitrate at 640 lb/Acre was side-dressed after planting. Insect control was with Pydrin and Sevin. Results are shown in Table B-3.

Fall and Winter Trials.

For the Fall trial 'Premium Crop' was seeded on Oct. 22, 1993 and was harvested from Dec. 27 to Jan. 5, 1994. Spacing was 1 by 2.5 ft for a density of 17,425 plants/ Acre. Yields at this density were 1.4 lbs per head or 19,864 lbs/Acre. For the winter trials broccoli was seeded on Oct. 27, 1986 and harvested from Jan. 9 to Feb. 5, 1987. Plant spacing was 1.5 feet between plants in the row and 5 ft between rows. Plants were fertilized with 1000 lbs/Acre of 10-30-10 and were fertilized with 80 lbs/Acre of 12-26-26 applied once a week for 4 weeks. Results are shown in Table B-4.

Spring Experiment, 1991

Broccoli was seeded on Feb. 6 and transplanted on March 4, 1991. The trial consisted of three replications with 15 plants per replication. Planting distance was 0.75 ft between plants in the row and 3.5 ft between rows for a population of 16,596 plants/Acre. 1000 lbs/Acre of 10-30-30 were applied at preplant, and calcium nitrate at 640 lbs/Acre was side-dressed two weeks after planting. Herbicide treatment was with Dacthal, and the plots were also hand weeded as needed. Bravo and benlate were used as fungicides, and pydrin and sevin for insect control. Results are shown in Table B-2.

Table B.2. Broccoli cultivar yields in Molokai, Spring 1991

		1	10	
Cultivar	Source	Yield	Weight per plant	
		(lbs/Acre)	(lbs/plant)	
Higher Yielders				
Southern Crop	Takii	26,830	1.62	
Premium Crop	Takii/Peto	23,787	1.43	
Galaxy	Asgrow	23,511	1.41	
Lower Yielders				
Cruiser	Takii	19,915	1.20	
Green Duke	Takii	14,936	0.90	
Green Comet	Abbott/Takii	10,787	0.65	
Cape Queen	Takii	10,510	0.63	
¹ Yield at 16,596	plants/Acre.			

Table B.1. Broccoli cultivar yields in Molokai, Spring 1986.

Cultivar	Stem	Head	Yield	Weight per	Side-	Head	1st harvest	Last harvest
	size (in)	size (in)	(lb/Ac)	plant (lbs)	shoots	Tightness1	(date)	(date)
Higher Yielders								
Top Star	1.6	7.9	7,744	1.3	No	1.0	Jun. 20	Jul. 11
Green Comet	2.0	8.0	5,929	1.0	Yes	2.7	Jun. 10	Jun. 20
Cape Queen	2.0	8.7	5,808	1.0	Yes	3.0	Jun. 13	Jun. 20
Citation	1.8	7.2	5,505	0.9	Yes	3.0	Jun. 3	Jun. 23
Lower Yielders								
Bonanza	1.8	8.0	4,840	0.8	Yes	3.0	Jun. 3	Jun. 13
Aux. 7901	1.5	7.2	4,598	0.8	No	2.7	Jun. 20	Jul. 2
Futura	2.0	6.0	2,783	0.5	No	3.0	Jun. 20	Jul. 11
De Cicco	1.7	6.0	2,420	0.4	No	4.0	Jun. 23	Jul. 11
Apollo	_		_	_	_		_	—

¹ Yield at 5,787 plants/Acre.

Cultivar	Percent	Percent	Percent	Yield	Weight per	
	Grade A	Grade B	Off-Grade	(lbs/Acre)	plant (lbs)	
Higher Yielders						
Prominence	5	75	20	7,283	0.44	
Zeus	100	0	0	7,283	0.44	
Green Comet	100	0	0	7,283	0.44	
Green Top	100	0	0	7,099	0.43	
Lower Yielders						
Southern Commet	100	0	0	6,085	0.36	
Premium Crop	100	0	0	5,716	0.34	
Cape Queen	0	100	0	5,808	0.35	
Pinnacle	0	77	22	5,347	0.32	

¹ Yield at 16,596 plants/Acre.

Table B.4. Broccoli cultivar yields in Molokai, Winter 1993.

Cultivar	Date first	Date last	Yield	Weight per	
	harvest	harvest	(lbs/Acre)	plant (lbs)	
Higher Yielders					
XPH-852	Jan. 23	Feb. 5	8,334	1.44	
Apollo	Jan. 23	Feb. 3	6,969	1.20	
Citation	Jan. 23	Feb. 3	6,766	1.17	
Gem	Jan. 20	Feb. 5	6,504	1.12	
Lower Yielders					
Green Valiant	Jan. 20	Feb. 5	6,417	1.10	
Galaxy	Jan. 9	Jan. 23	5,299	0.91	
Packman	Jan. 9	Jan. 28	4,936	0.85	
Baccus	Jan. 9	Jan. 23	3,107	0.54	
Şo. Commet	Jan. 15	Jan. 26	6,185	1.07	

Yield at 16,596 plants/Acre.

Results

The top yielding varieties in the Spring were 'Southern Crop', 'Premium Crop', and 'Galaxy'. In the Summer the higher yields were obtained by 'Prominence', 'Zeus', 'Green Comet', and 'Green Top'. In the Winter the higher yields were obtained by 'XPH-852', 'Apollo', 'Citation', and 'Gem'. Average overall yields were 4,953 in the Spring 1986 (low yields due to hollow-heart), 18,611 in the Spring 1991, 6,488 lbs/Acre in the Summer, 19,864 lbs/Acre in the Fall, and 6,057 lbs/ Acre in the Winter. Yields for Premium were 23,787 in the Spring, 5,716 in the Summer, and 19,864 lbs/Acre in the Fall. Yields for Cape Queen were 10,510 in the Spring and 5,808 lbs/Acre in the Summer. Yields for Southern Comet were 6,080 in the Summer and 6,185 lbs/Acre in the Winter. These data indicate that yields are in general lower in the summer due to the higher temperatures, low during winter, perhaps due to more diseases, and that some varieties are adapted in Molokai for the specific growing seasons. The data also indicates the maturity date for some of the varieties tested, which is important to know for cultivar selection, and to schedule annual marketing and farming operations.

Have a minute? Stop by and visit the several ongoing research activities around the state!!

- **Pomamoho Station**: Watermelon (with insectary borders), horenso spinach, sweetpotato, and daikon variety trial.
- Waimanalo Station: chili pepper, bell pepper, bulb onion, and taro variety trial, basil and vegetable compost trials. No-till trials planned by Dr. J. DeFrank; also, leafy green fertility calibration studies by Dr. Jim Silva
- Waimanalo: Basil fusarium resistant study by Randy Hamasaki
- **Pearl City**: sweetpotato variety trial, eggplant N rate study, soybean N fixation study, leafy green fertility study.

Kunia (HSPA): lettuce, cauliflower, broccoli, bulb onions, etc. by Dr. John McHugh

Kamuela: trap crop experiments for diamondback moth control in head cabbage **Volcano**: daikon variety trial in the station and in on-farm trials.

Molokai: strawberry, taro, lettuce, etc. variety trials, cover crop trials for nematode resistance

On and About

Carrot Cultivar Trials in Molokai

Alton Arakaki and Hector Valenzuela

Most of the carrot consumed in Hawaii is imported from the continental U.S. However as new ag land becomes more available the opportunity may exist for local production during specific market windows, or for the local production of specialty carrots. Cultivar trials with carrot were thus conducted in August and again in October 1986 to evaluate yields and adaptability to local Fall and Winter climatic conditions in Molokai. In the first trial carrot was direct-seeded on Sep. 15, and harvested on Dec. 6, 1986. The soil was treated with Vydate for nematode management. The trial had 3 replications. The plants received preplant 500 lb/Acre 10-30-10 and 500 lbs/Acre 10-30-10 side-dressed 4 weeks after seeding. Results shown in Table C-1 include yields obtained for both thinned and unthinned plots.

For the second trial the crop was seeded on Oct. 23 and harvested in 3 Feb., 1987. Spacing was 3 inches between plants in the row and 30 in between rows for a density of 69,440 plants/Acre. Plots received 500 lb/Acre of 10-30-10 pre-plant, and were post-plant side-dressed with 500 lbs/Ac 10-30-10. Results are shown in Table C-2. A major problem was experienced due to overseeding. The best varieties in terms of yields and marketability were 'Charger', 'Fanci Pak', and 'Orlando Gold PS' in the first trial and 'Apache' and 'Crunchy' in the follow-up trial. Cultivar differences were observed in their response to high density (un-thinned) plantings. The lower performance of 'Orlando Gold' in the first trial may indicate its lower adaptability to the warmer conditions experienced during the late Summer/early Fall in Molokai than in the cooler late Fall conditions.

Table C-1.Carrot cultivar yields in Molokai, seeded Sept. 15, 1986.

				Thinned Plots		
Cultivar	Thinned yields Un-thinned yield (lbs/Acre) (lbs/Acre)		Percent Grade A Fruits	Percent Grade B Roots	Percent culls	
Higher Yielders						
Charger	6,978	6,978	58	0	52	
Fanci Pak	6,385	27,299	65	0	34	
Orlando Gold PS	9,874	16,844	69	0	31	
Short in Sweet	28,338	28,918	8	50	40	
Lower Yielders						
Toudo	18,455	0	67	0	33	
Orlando Gold	12,197	15,682	35	0	65	
Red Cored Chatney	18,455	0	0	100	0	
PSX 6283	3,928	19,167	0	0	100	
Nantes Half Long	871	0	0	0	100	

¹ Yield at 69,440 plants/Acre.

Cultivar	Yield	Weight per plant
	(lbs/Acre)	(lbs)
Apache	82,473	1.19
Crunchy	80,150	1.15
Dess Dan	45,305	0.65
Nantes Mexican		
Strain	31,365	0.45
Gold keeper	24,395	0.35
Orlando Gold	24,395	0.35
Golden State	22,652	0.33
Olympiad	20,910	0.30
Goldmine	17,425	0.25
Dominator	16,263	0.23

Table C-2. Carrot variety yields in Molokai, seededOct. 23, 1987

Biofumigation with Mustards

Thinned Plots

Isothiocyanates volatiles released from the roots of canola (Brassica napus L) and Indian mustard (B. juncea L. Czern and Coss.) inhibited growth of pure cultures of the disease take-all of wheat (Gaeumannomyces graminis). The low concentrations released during breakdown of these crops in the soil would effectively check the growth of the take-all fungus (Angus et al.. Plant & Soil 162:107(1994)).

The University of Hawaii at Manoa, College of Tropical Agriculture and Human Resources, Cooperative Extension Service is an Equal Opportunity/ Affirmative Action Institution providing programs and services to the people of Hawaii without regard to race, sex, age, religion, color, national origin, ancestry, disability, marital status, arrest and court record, sexual orientation, or veteran status.

•	•	•	•	•	•	•	•	•

Head Cabbage Summer Cultivar Trial in Molokai

Alton Arakaki and Hector Valenzuela

A trial was conducted to evaluate the growth of 20 head cabbage varieties in Molokai during the Summer months. The crop was seeded on May 2, transplanted on June 2, and harvested 70 days later. The experiment had 3 replications per variety with 6 plants used per plot. Spacing was 1 ft between plants in the row and 5 feet between rows for a plant population of 8,713 plants per acre. Results are shown in Table Cab-1, including the projected vields at standard commercial plant populations of 14,460 used when plants are spaced 1.5 by 2 feet.

.

Table Cab-1. Yield o	f Head Cabbaş	ge in Molokai, Sum	nmer 1990	
Cultivar	Weight per	Yield at low	Yield at high	
	head	density, 1 x 5 ft	density, 1.5 x 2 ft	
	(lb)	(lb/Acre)	(lb/Acre)	
Higher Yielders				
Green Cup	2.50	22,145	36,752	
Scarlet O'Hara ²	1.50	13,069	21,690	
Southern Treasure	1.48	12,948	21,489	
Globe King	1.02	8,955	14,861	
KK Cross	0.94	8,228	13,656	
Resist Crown	0.91	7,986	13.255	
KY Cross	0.90	7,856	13,054	
Globe Master	0.83	7,260	12,050	
Resist Top	0.80	7,018	11,648	
Mighty Globe	0.80	7,018	11,648	
Lower Yielders				
CG Cross	0.77	6,776	11,246	
NS Cross	0.77	6,776	11,246	
Green Commet ¹	0.69	6,050	10,041	
Rapid Ball	0.67	5,808	9640	
YR Summer	0.67	5,808	9,640	
Tight Globe	0.55	4,840	8,033	
Heads Up ³	0.30	2,420	4,016	
Fortune	0.19	1,694	2,811	
Green Stone	0.33	2,904	4,820	
Sun Up ³	0.37	3,267	5,422	

Takii

Shephards

Harris Moran

Research Highlights

Verticillium wilt affected by N source

Verticillium wilt is an important disease in eggplant resulting in yields of up to 50%. No resistance is available to this disease, and the recommended 2-5 year rotation is often impractical. Researchers in Connecticut found that under low disease pressure conditions, ammonium-N may improve disease control compared to nitrate-N fertilizer sources. Ammonium-N sources resulted in greater nonstructural carbohydrate, N, P, and Mn concentrations in roots and leaves, and in 33-44% increased yields, compared to nitrate-N sources. (Elmer and Ferrandino, Pl. Dis. 78:811(1994)).

Thrips chemical control in Citrus

Trials were conducted in Florida to evaluate several chemicals for flower thrips control in citrus. Treatments were made with an airblast sprayer in water solution at 200 gallons per acre. When combined with fungicides, treatments with Lorsban, Cygon, and Carzol resulted in higher yields. In follow-up work effective treatments (at 125 gallons of water per acre) included 1) one application of Lorsban followed by Carzol, and 2) an application of Cygon followed by Carzol. The researchers are evaluating sticky traps in 6 ft poles for monitoring thrips populations (Fl. Grower and Rancher June 1994 pg. 14-15). Farmers, as an endangered species: factoids from Nebraska

- Number of farmers in Nebraska declined 13% from 1987 to 1994.
- Number of farmers under age 35 decreased by 30% over this period of time.
- Number of farmers under 60 declined by 5%.
- Number over 70 years old actually increased by 10%.
- Average age of farmer in Nebraska is 51 years old (Center Rural Affairs Newsl. Jan. 1995).

Disease control with additives

Tomato seeds treated with chitosan, a derivative from crabshell chitin, induced systemic resistance to Fusarium Crown and root rot in tomato. The chitosin apparently created a toxic environment that reduced pathogen growth (Benhamou et al, Phytopath. 84:1432(1994)).

Fungal isolates from the zosiagrass rhizosphere effectively induced resistance to anthracnose in cucumber, with the protection being less effective at high pathogen spore concentrations. Treatments of cucumber seeds with these inocula also resulted in increased plant height and biomass (Meera et al., Phytopath, 84:1399(1994)).

Chinese Cabbage Trial in Molokai

Alton Arakaki and Hector Valenzuela

A trial was conducted to evaluate the growth of two Chinese cabbage varieties during the Winter in Molokai. The crop was seeded in Oct. 22, 1993 and harvested from Dec. 27 to Jan. 15, 1994. Spacing was 2.5 ft between rows and 1 ft between plants in the row, for a density of 17,426 plants/Acre. The yields obtained were:

Dai k	on	cultivar	tri -
al s	i n	Poamoho	

Hector Valenzuela

A trial was conducted in the Summer 1994 to evaluate the growth of 18 daikon varieties at the University of Hawaii Poamoho Experiment Station in Oahu. The station is located at 870 ft elevation and has 45 inches median annual rainfall. The red Wahiawa silt clay soil is derived from basalt that is kaolinitic with oxides of iron and manganese with pH of 5-6.5 and organic matter content of 2%. The crop was direct seeded on July 15, 1994. Standard protocols were followed for commercial daikon production. 'Chinese Improved Earliest', the earliest cultivar and the standard variety grown in Oahu was harvested on August 29 and on Sept. 11. The other varieties were harvested on Sept. 12 and 19th. The trial consisted of two replications, with 30 feet per replication. Plant spacing was 3-4 inches between plants, and two rows per bed. Distance between rows in the bed was 1 feet and distance between beds was 2 feet, for an estimated final population density of 115,733 plants per Acre. Results are shown in Table D-1. Yields of about 40 MT/Acre or greater were obtained by 'Chinese Improved Earliest', 'Kyoto Flash', 'April Cross', and 'SDA-0103'. 'High Snow' roots had similar desirable characteristics as the standard 'Chinese Improved Earliest', but yields were about 40% lower. This variety may thus be useful as a second choice if seed for 'Chinese Improved' is unavailable. Root dimensions were obtained from 3-4 roots per variety and were in general smaller than those values reported by the seed catalogs. 'Red Coat' had uniform roots and should be promising for salads and for pickled dishes. Follow-up trials are being conducted for winter production in Poamoho and Volcano and results will be reported as they become available.

Seed Companies	Marutane Co. Ltd.
Champion Seed	C.P.O. Box 65
529 Mercury Lane	Kyoto 600 Japan
Brea, CA 92621	
	Sakata Seed America Inc. (also see
Known-you seed Co., Ltd.	Champion Seed)
26, Chung Cheng 2nd	POB 880
Road	18905 Serene Dr.
Kaohsiung	Morgan Hill, CA 95037-0880
Taiwan	-
	American Takii, Inc. (also see Cham-
Kyowa Seed Co., Ltd	pion)
15-13 Nanpeidai	301 Natividad Rd
Shibuya-ku	Salinas, CA 93906
Tokyo, Japan	

Cultivar	Yield (lbs/Acre)	Weight per plant (lbs)
AS Veg #1	58,150	3.3
189 Miniture	43,565	2.5

Daikon Cultivar Descriptions

Summer Mino Early (Marutane). Japanese long white, heat resistant, root about 18 in long, and 2 in diameter, neck color is white, medium slow bolting, tolerant against virus, black rot and soft rot, grows well in subtropical areas, excellent uniformity and easy to grow.

Kyoto flash (Marutane). Japanese long white. About 13 in long and 3 in diameter, 2 lb each.. Neck color is green, good mild taste.

Spring Joy (Marutane). Japanese long white, Very slow bolting, about 12 in long, and 4 in diameter, neck color is green, Suitable for greenhouse production, easy growing and excellent taste.

All Season or Tokinashi (Marutane). Open pollinated. Japanese long white. Extra slow bolting. Root about 16 in long and 2 in diameter, white neck color.

Omny (Sakata). F-1 hybrid. More vigorous than All Season. Tolerant to premature bolting. Slightly green on neck end. Suitable for close planting. Root about 16 in long. Virus, black rot and soft rot tolerant.

SDA 0102 and 0103 (Sakata) Narumi (Mikado)

April Cross (Takii). Extra low bolting, vary late pithiness. White neck, 16 in long, 1.5-2 lb, excellent quality for cooking, pickling, salad.

Minowase Summer Cross No. 3 (Takii). Resistant to virus, fusarium, and heat. Excellent quality, white neck, 16 in long, 1.5-2 lb, excellent quality for cooking, pickling,salad.

Relish Cross (Takii). Excellent quality, very late pithiness, green neck, 15 in long, 1.5-2 lb, good quality for cooking, pickling, salad. High tolerance to virus.

Shariki (Kyowa). Hybrid. Compact and erected leaves with green shoulder. Weighs about 3 lb and is 14 in long and 2.5 in diameter.

Red Coat (Know You). Plants are small, erect, vigorous, tolerant to TuMV, good for close planting. Straight roots are about 8 in long and 2 in diameter. Purple-red skin and flesh, suitable for salad.

Kyoto Ball (Marutane). Japanese ball type, Excellent uniformity. Root about 6 in length and 6 in diameter, and 4 lb each. Neck color light green. Flesh is white and texture is crisp and mild, good for boiling.

Nova Shogoin (Marutane). Japanese ball type, about 6 in long and 6 in diameter, weight per root is about 2 lbs, light green neck color.

High Snow (Know You). Hybrid. Plants are large, vigorous and early. Roots are 10 in long and 3 in diameter, about 2 lbs. Straight, white skin, and flesh, fine texture and high yielding. Good for warm season planting.

• • • • • • • • • • • • • • • • • •

Table D-1. Yields and yield parameters of daikon cultivars grown in Poamoho, Summer 1994.

Cultivar	Total	Percent	Percent	Marketable	Root	Root	Mean
	Marketable	Grade A	Grades	Weight per	diameter	length	root
	yields (lb/Ac)		A & B	30 ft row (lbs)	(in)	(in)	weight (lb)
Long Type, Higher Y	lields						
SDA-0103	44,768	85	87	46	2.1	12.9	0.99
April Cross	41,798	87	89	43	2.1	15.0	0.98
Kyoto Flash	39,676	84	86	41	2.1	12.7	1.2
Chinese Improved	39,464	82	93	41			
Relish Cross	36,918	93	88	38	2.2	12.6	1.03
SDA-0102	35,221	92	98	36	2.5	12.7	1.24
Long Type, Lower Y	ields						
Marumi	32,675	87	87	34	2.1	10.6	0.78
Shariki	30,128	94	96	31	2.2	12.4	0.93
Minowase Summer	28,219	87	86	29	2.1	15.0	1.16
High Snow	24,612	94	94	25	2.9	10.9	1.4
Spring Joy	24,440	86	71	25	1.9	12.9	1.07
Red Coat	22,278	90	90	15	2.4	7.8	0.68
Summer Mino	22,066	87	76	23	2.2	16.3	1.10
Omny	21,005	92	91	22	2.2	14.7	1.35
All Season	11,457	60	79	12	1.6	10.5	0.42
Ball Type							
Nova Shogoin	23,339	51	82	24	3.3	5.8	0.85
Kyoto Ball	15,700	69	80	16	4.0	5.0	1.10

Acknowledgments: Thank-you to: the listed seed companies for supplying seed samples; to Stacy Riede for help in experiment design and preparation; to Richard Nakano and the staff at Poamoho Experiment station for excellent field maintenance, data collection, and for helping to host the field day in September 1994.

UPCOMING EVENTS

Marketing for Profit in Agriculture: Emerging Marketing Opportunities for Hawaii 24-25 March, 1995, Keauhou Beach Hotel, Kona, Hawaii. Pre-registration is \$40, on-site registration is \$65. Mail registration to HFBF, 2343 Rose St., Honolulu, HI 96819. For more info contact Wendell Koga at 808-848-2074, Fax 808-848-1921.

Microirrgation for a Changing World: Conserving Resources/ Preserving the Environment, 2-6 April, 1995. Orlando, Florida. For information contact ASAE, 2950 Niles Road, St. Joseph, MI 49085-9659.

1995 CTAHR Conference: Hawaii Ag Positioning for Growth. UH Campus Center, Honolulu, 5-6 April. 1995. Co sponsored by Hawaii Farm Bureau Federation and UH College of Tropical Ag. and Human Resources. For information contact: Lynn LeBeck at 808-956-9123 Aquatic Weed Control, Aquatic Plant Culture and Revegetation Short Course, 16-18 May 1995, Rolling Hills Hotel and Golf Resort, Ft. Lauderdale, early registration before 31 March is \$69. For info contact Aquatic Weed/IFAS Office of Conferences, POB 110750, Gainesville, FL 32611-0750, Tel. 904-392-5930, Fax. 904-392-9734.

Postharvest Horticulture Asia '95, International Conference, 23-24 Aug. 1995, Philippine Trade Training Center. Held concurrently with Agricultrue Asia 1995 (23-26 Aug). For information contact: PHTRC, Univ. Philippines at Los Baños, College, Laguna, Philippines, Tel. (63-94) 2444, Fax (63-94) 3259.

Third National Symposium on New Crops: New opportunities, New technologies. 22-25 Oct. 1995, Adams Mark Hotel, Indianapolis, Indiana. For information contact: Center for New Crops and Plant Products, 1165 Horticulture Bldg., West Lafayette, IN 47907-1165, Tel. 317-494-1329, Fax 317-494-0391.

Hector Valenzuela, Ph.D. Vegetable Crops Asst. Extension Specialist Tel. 808-956-7903, Fax 808-956-3894

Zucchini Cultivar Trials

Hector Valenzuela and Stacy Riede

A trial was conducted in the Summer 1994 to evaluate the growth of 7 zucchini varieties at the University of Hawaii Poamoho Experiment Station in Oahu. The station is located at 870 ft elevation and has 45 inches median annual rainfall. The red Wahiawa silt clay soil is derived from basalt that is kaolinitic with oxides of iron and manganese with pH of 5-6.5 and organic matter content of 2%. The crop was direct seeded on July 13, 1994. Standard protocols were followed for commercial zucchini production. The fruit was first picked on August 15th, and was thereon picked 10 times for four weeks. The plants were spaced 5 feet between hills and 6 feet between rows. The field was thinned to two plants per hill. The crop was bordered by several sweet corn rows and several malathion baited lures were placed in the plots for melon fly control. The varieties were monitored and rated based on their susceptibility (as determined by apparent visual "silver leaf" symptoms) to the silver leaf whitefly. Some viral symptoms developed late in the crop growth cycle and had no apparent effect on final yields.

Results. Trial results are shown in Table Zu-1. 'Giada', a white fruited variety had the greatest yields producing over 34 tons per acre. Other top yielders were 'Ambassador' which is the standard green zucchini variety in Hawaii, 'Botna', and 'Elite'. The top yielders had greater fruit quality with approximately 50% of fruit produced graded as marketable, and with 30-37% of all fruit produced classified as Grade A. About 50% of the fruit produced for all varieties was graded as jumbos (graded here as unmarketable). Due to labor limitations we only harvested 2-3 times per week, instead of daily pickings as is done commercially, which resulted in the large incidence of jumbos. 'Commander' showed the least incidence of silverleaf whitefly with below moderate damage levels. The other varieties showed intermediate damage levels, while 'Botna' had the highest damage ratings, among all varieties tested. The whitefly was not a significant problem in this trial, but information on tolerance to whitefly feeding may be important for cultivar selection in locations where

high whitefly numbers are expected. Similar observations were made in trials conducted in Waianae in which 'Classic' showed the least symptoms, 'Ambassador' was intermediate and 'Spineless' zucchini showed the most damage from whitefly feeding (unpublished data).

.

Elite (Harris Moran). Hybrid. Earlier than other varieties. Fruits are long and slim and when picked young, cylindrical in shape.. A lustrous sheen to fruit color adds attractiveness to the fruit. Fruit color is medium green, shape is long, nearly cylindrical. High yields.

Midnight (Harris Moran). Hybrid. Very dark green fruit, fruit is cylindrical with blunt ends, uniform fruit shape, and holds green color well under light sunlight.

Elira (Nunhems). F1 hybrid. Medium vigorous plant growth, open plant habit. Medium long, cylindrical fruits. Dark green, glossy color, high yielding, suitable for field and greenhouse production.

Botna (Nunhems). F1 hybrid. Vigorous growth. Single stem without laterals, long, slender, cylindrical fruits, medium green, glossy fruit color, flecked with light green. Fruit easy to pick, suitable for field or greenhouse production.

Giada (Nunhems). F1 hybrid, vigorous plant growth, open plant habit. Medium early harvests, medium long, global/cylindrical fruit shape, light green to white colored fruits, very productive

Commander (PetoSeed). Dark green fruit with fine speckles, refined blossom end, open plant type, early maturity approx. 48 days. Cylindrical fruit, vigorous bush, fruit 8-9 in long, good for processing and fresh market.

Ambassador (PetoSeed). High yields over a long season and earliness. Fruit has a medium green, waxy exterior. Open plant habit. Fruit is 7-8 in long, cylindrical and smooth, plant type is compact bush, open habit with easy picking.

Cultivar &	Yield per	Yield per	Fruit No.	Marketable/	Percent	Percent	Whitefly
(seed source)	100 ft row	Acre	per Acre	Total Fruit	Grade A	Grade B	damage index
	(lbs)	(lbs) ^Z		Weight (%)	by weight ^y	by weight ^y	(1 low: 5 high)
Giada (Harris)	216a ^x	31,262a	34,262a	50	37a	12a	3.4bc
Ambassador (Peto)	173ab	25,144ab	28,384ab	48	31ab	17a	3.3b
Botna (Nuhmems)	173ab	25,134ab	28,766ab	46	30ab	16a	4.9d
Elite (Harris)	166ab	24,044ab	27,046ab	45	26abc	19a	3.7bc
Midnight (Harris)	115bc	16,657bc	20,452bc	38	23bc	15a	4.1c
Commander (Peto)	113bc	16,422bc	18,628c	36	17c	19a	2.2a
Elira (Nunhems)	102c	14,760c	17,456c	39	22bc	17a	3.4bc

Table Zu-1 Zucchini cultivar vields in Poamoho Station Summer 1994

^Z Yields based on density of about 3,000 hills per acre (spacing of 5 by 3 ft).

^y Percent Grade A and B fruit is based on percent out of total fruit weight produced per plant including culls and jumbos. Jumbo fruit yields were similar to marketable yields and were not included as marketable fruit. The large number of jumbos was due to the infrequent harvesting (2-3 times per week instead of daily as is done in commercial operations).

^X Numbers followed by the same letter within each column are not significantly different according to Duncans New multiple range test (P<0.05).

Acknowledgments: Thank-you to: the listed seed companies for supplying seed samples; to Richard Nakano and the staff at Poamoho Experiment station for excellent field maintenance, data collection, and for helping to host the field day in September 1994.