Formula for Calculating Number of Replicates

$$
\begin{aligned}
& r \geq 2 \frac{C V^{2}}{D^{2}}\left(t_{1}+t_{2}\right)^{2} \\
& r \geq 2 \frac{s^{2}}{d^{2}}\left(t_{1}+t_{2}\right)^{2}
\end{aligned}
$$

r = number of reps
CV = coefficient of variation
D = true difference it is desired to detect as a \% of mean
$\mathrm{t}_{1}=$ tabular t value for a specified level of significance and df for error
$t_{2}=$ tabular t value for df for error and a probability of 2(1-P), where P is the probability of detecting a significant result in a particular experiment
s = standard deviation
d = true difference it is desired to detect

Options for Obtaining the Desired Number of Replications

Conditions	D	CV	t_{1}	$\mathrm{t}_{2}(\mathrm{P})$	r
100 bu	10%	10%	1%	95%	37

${\text { Reduce } t_{1} \& P}^{\text {\& }}$	10	10	5	90	22
Increase D	20	10	5	90	7
Reduce CV	10	5	5	90	7
Reduce P	10	10	5	80	17

From Cochran and Cox, 1957.

