Assumptions in the Analysis of Variance

1. Error terms are randomly, independently, and normally distributed

$$
\mathrm{e}_{\mathrm{ij}} \approx \mathrm{~N}\left(0, \sigma^{2}\right)
$$

2. Variances of different samples are homogenous
3. Variances and means of different samples are not correlated, i.e. are independent
4. The main effects are additive

Additivity of Main Effects - RCBD

$$
\begin{gathered}
X_{11}=\bar{X} . .+t_{1}+b_{1}+e_{11} \\
\frac{-\left(X_{21}=\bar{X} . .+t_{2}+b_{2}+e_{21}\right)}{X_{11}-X_{21}=t_{1}-t_{2}+e_{11}-e_{21}}
\end{gathered}
$$

Difference between 2 treatments in RCBD is the same in all blocks and is influenced only by the residual effects

Method of Least Squares

The mathematical model describes the components of a design.
$X_{i j}=\bar{X} .+t_{i}+b_{j}+e_{i j}$
$e_{i j}=X_{i j}-\left(\bar{X} . .+t_{i}+b_{j}\right)$
Best estimator of population parameters is obtained by minimizing SSError
SSError $=\sum \mathrm{e}_{\mathrm{ij}}{ }^{2}=\sum\left(\mathrm{X}_{\mathrm{ij}}-\left(\overline{\mathrm{X}} .+\mathrm{t}_{\mathrm{i}}+\mathrm{b}_{\mathrm{j}}\right)\right)^{2}$
The minimum is found by the method of Least Squares. Differentiate $\sum \mathrm{e}_{\mathrm{ij}}^{2} \quad$ with respect to each unknown in turn and set the derivative to 0 :
$\sum\left(\mathrm{X}_{\mathrm{ij}}-\left(\overline{\mathrm{X}}_{\mathrm{K}}+\mathrm{t}_{\mathrm{i}}+\mathrm{b}_{\mathrm{j}}\right)\right)=0$
$\sum \mathrm{X}_{\mathrm{ij}}=\sum\left(\overline{\mathrm{X}}+\mathrm{t}_{\mathrm{i}}+\mathrm{b}_{\mathrm{j}}\right)$
This is the Normal Equation for an RCBD. It is used to obtain the best estimates of the population parameters.

RCBD experiment with 3 treatments and 2 blocks

	T1	T2	T3	B totals	B means	Dev. from mean
B1	3	9	6	18	6	+1
B2	5	1	6	12	4	-1
T totals	8	10	12	30		
T means	4	5	6		5	
Dev. from mean	-1	0	+1			

RCBD with 3 treatments and 2 blocks in dot notation

B_{j}	T 1	T 2	T 3	B Totals	B Means
B1	$\mathrm{X}_{11}=3$	$\mathrm{X}_{21}=9$	$\mathrm{X}_{31}=6$	$\mathrm{X}_{.1}=18$	$\bar{X}_{.1}=6$
B2	$\mathrm{X}_{12}=5$	$\mathrm{X}_{22}=1$	$\mathrm{X}_{32}=6$	$\mathrm{X}_{.2}=12$	$\bar{X}_{.2}=4$
T Totals	$\mathrm{X}_{1 .}=8$	$\mathrm{X}_{2 .}=10$	$\mathrm{X}_{3}=12$	$X_{1 .}=30$	
T Means	$\bar{X}_{1 .}=4$	$\bar{X}_{2 .}=5$	$\bar{X}_{3 .}=6$		$\bar{X}_{. .}=5$

Normal Equations
For one observation, $t_{1} b_{1}$, the expected value is

$$
\hat{X}_{11}=\bar{X} .+t_{1}+b_{1}
$$

For the treatment 1 total, T_{1}

$$
\begin{gathered}
\hat{X}_{11}=\bar{X} . .+t_{1}+b_{1} \\
\hat{X}_{12}=\bar{X} . .+t_{1}+b_{2} \\
\mathrm{~T}_{1}=\mathrm{X}_{1 .}=8=2 \bar{X}_{\ldots}+2 t_{1}+b_{1}+b_{2}
\end{gathered}
$$

For the block 1 total, B_{1} $B_{1}=X_{-1}=18=3 \bar{X} . .+t_{1}+t_{2}+t_{3}+3 b_{1}$

From the normal equation for the T_{1} total, the best estimator for treatment 1 effect, t_{1}, is $\mathrm{T}_{1}=2 \overline{\mathrm{X}} . .+2 \mathrm{t}_{1}+\mathrm{b}_{1}+\mathrm{b}_{2}$

Effects are recorded as deviations from the mean, so
$b_{1}+b_{2}=0$
$\mathrm{T}_{1}=2 \overline{\mathrm{X}} .+2 \mathrm{t}_{1}$
$\mathrm{t}_{1}=\frac{\mathrm{T}_{1}}{2}-\overline{\mathrm{X}} .=\bar{X}_{1}-\overline{\mathrm{X}}$.
similarly, the best estimator for block j is $b_{j}=\bar{X}_{\mathrm{i}}-\overline{\mathrm{X}}$.
Measure of Variance
From the mathematical model
$e_{i j}=X_{i j}-\left(\bar{X} . .+t_{i}+b_{j}\right)$
$e_{i j}=X_{i j}-\hat{X}_{i j}=$ Observed-Expected
Use best estimators to calculate the expected values for observations
$\hat{X}_{i \mathrm{i}}=\bar{X}_{. .}+\mathrm{t}_{\mathrm{i}}+\mathrm{b}_{\mathrm{j}}=\overline{\mathrm{X}} . .+\left(\overline{\mathrm{X}}_{\mathrm{i} .}-\bar{X}_{. .}\right)+\left(\bar{X}_{. j}-\bar{X}_{. .}\right)$
Error components are the differences between observed and expected values
$\mathrm{e}_{11}=3-[5+(4-5)+(6-5)]=-2$
$e_{12}=5-[5+(4-5)+(4-5)]=+2$
$\mathrm{e}_{21}=9-[5+(5-5)+(6-5)]=+3$
$e_{22}=1-[5+(5-5)+(4-5)]=-3$
$e_{31}=6-[5+(6-5)+(6-5)]=-1$
$e_{32}=6-[5+(6-5)+(4-5)]=+1$

Estimated Errors

	T1	T2	T3	B_{j}
B1	-2	+3	-1	0
B2	+2	-3	+1	0
Ti.	0	0		

The errors can be squared and summed to obtain the sum of squares for error
SSError $=\sum \mathrm{e}_{\mathrm{ij}}^{2}=(-2)^{2}+2^{2} \ldots+1^{2}=28$

This is the same result as is obtained more efficiently in the ANOVA.
df Error $=$ df Total - df Trt - df Block $=5-2-1=2$
Equivalently
df Error $=(r-1)(t-1)=(2-1)(3-1)=2$
MSError $=28 / 2=14=s^{2}$ or variance
MSError is the unexplained or random variability

