Assumptions in the Analysis of Variance

1. Error terms are randomly, independently, and normally distributed

$$e_{ii} \approx iN(0, \sigma^2)$$

- 2. Variances of different samples are homogenous
- 3. Variances and means of different samples are not correlated, i.e. are independent
- 4. The main effects are additive

Additivity of Main Effects - RCBD

$$X_{11} = \overline{X}_{..} + t_1 + b_1 + e_{11}$$

 $\frac{-(X_{21} = \overline{X}_{..} + t_2 + b_2 + e_{21})}{X_{11} - X_{21} = t_1 - t_2 + e_{11} - e_{21}}$

Difference between 2 treatments in RCBD is the same in all blocks and is influenced only by the residual effects

Method of Least Squares

The mathematical model describes the components of a design.

$$X_{ij} = \overline{X}_{..} + t_i + b_j + e_{ij}$$

$$e_{ij} = X_{ij} - (\overline{X}_{..} + t_i + b_j)$$

Best estimator of population parameters is obtained by minimizing SSError

SSError =
$$\sum e_{ij}^{2} = \sum (X_{ij} - (\overline{X}_{..} + t_{i} + b_{j}))^{2}$$

The minimum is found by the method of Least Squares. Differentiate $\sum_{ij} \mathbf{e}_{ij}^2$ with respect to each unknown in turn and set the derivative to 0:

$$\sum (X_{ij} - (\overline{X}_{..} + t_i + b_j)) = 0$$

$$\sum X_{ij} = \sum (\overline{X}_{..} + t_j + b_j)$$

This is the Normal Equation for an RCBD. It is used to obtain the best estimates of the population parameters.

1

RCBD experiment with 3 treatments and 2 blocks

	T1	T2	Т3	B totals	B means	Dev. from mean
B1	3	9	6	18	6	+1
B2	5	1	6	12	4	-1
T totals	8	10	12	30		
T means	4	5	6		5	
Dev. from mean	-1	0	+1			

RCBD with 3 treatments and 2 blocks in dot notation

		$T_{\underline{i}}$			
B_{j}	T1	T2	Т3	B Totals	B Means
B1	X ₁₁ =3	X ₂₁ =9	X ₃₁ =6	X _{.1} =18	$\overline{X}_{.1} = 6$
B2	X ₁₂ =5	X ₂₂ =1	X ₃₂ =6	X _{.2} =12	$\overline{X}_{.2} = 4$
T Totals	X _{1.} =8	X _{2.} =10	X _{3.} =12	X_=30	
T Means	$\overline{X}_{1.} = 4$	$\overline{X}_{2.} = 5$	$\overline{X}_{3.} = 6$		X= 5

Normal Equations

For one observation, t_1b_1 , the expected value is

$$\hat{X}_{11} = \overline{X}_1 + t_1 + b_1$$

For the treatment 1 total, T_1

$$\hat{X}_{11} = \overline{X}.. + t_1 + b_1$$

$$\hat{X}_{12} = \overline{X}.. + t_1 + b_2$$

$$T_1 = X_1 = 8 = 2\overline{X}.. + 2t_1 + b_1 + b_2$$

For the block 1 total,
$$B_1$$

 $B_1 = X_{-1} = 18 = 3\overline{X}_{-} + t_1 + t_2 + t_3 + 3b_1$

Best Estimators of the Effects of Population Parameters

From the normal equation for the T_1 total, the best estimator for treatment 1 effect, t_1 , is $T_1 = 2\overline{X}_{...} + 2t_1 + b_1 + b_2$

Effects are recorded as deviations from the mean, so

$$b_1 + b_2 = 0$$

$$T_1 = 2\overline{X} + 2t_1$$

$$t_1 = \frac{T_1}{2} - \overline{X}.. = \overline{X}_1.. - \overline{X}.$$

similarly, the best estimator for block j is $b_j = \overline{X}_{-j} - \overline{X}_{-j}$.

Measure of Variance

From the mathematical model

$$e_{ii} = X_{ii} - (\overline{X}_{..} + t_i + b_i)$$

$$e_{ij} = X_{ij} - \hat{X}_{ij} = Observed - Expected$$

Use best estimators to calculate the expected values for observations

$$\hat{X}_{ij} = \overline{X}.. + t_i + b_j = \overline{X}.. + (\overline{X}_{i}. - \overline{X}..) + (\overline{X}_{ij} - \overline{X}..)$$

Error components are the differences between observed and expected values

$$e_{11} = 3 - [5 + (4 - 5) + (6 - 5)] = -2$$

$$e_{12} = 5 - [5 + (4 - 5) + (4 - 5)] = +2$$

$$e_{21} = 9 - [5 + (5 - 5) + (6 - 5)] = +3$$

$$e_{22} = 1 - [5 + (5 - 5) + (4 - 5)] = -3$$

$$e_{31} = 6 - [5 + (6 - 5) + (6 - 5)] = -1$$

$$e_{32} = 6 - [5 + (6 - 5) + (4 - 5)] = +1$$

Estimated Errors

	T1	T2	Т3	$B_{.j}$
B1	-2	+3	-1	0
B2	+2	-3	+1	0
T _{i.}	0	0	0	

The errors can be squared and summed to obtain the sum of squares for error

SSError =
$$\sum e_{ii}^2 = (-2)^2 + 2^2 ... + 1^2 = 28$$

This is the same result as is obtained more efficiently in the ANOVA.

df Error = df Total - df Trt - df Block = 5 - 2 - 1 = 2Equivalently df Error = (r - 1)(t - 1) = (2-1)(3-1) = 2

MSError = $28/2 = 14 = s^2$ or variance MSError is the unexplained or random variability