Curvilinear Relations

Correlation and regression are based on linear relationships.

Often a limited range of values can be fit by a straight line, but for a wider range of values the relationship may curve.

To select a curve to fit the data

- look for natural or logical relationships
- use a minimum number of variables

Many natural laws, however, have been discovered by fitting a curve and then explaining the relationship.

A large number of variables can fit any relationship but explain nothing.

Power curve

 $Y = aX^b$

log Y = log a + b log X

X and Y must be positive to take the log

 $\log Y = \log a + b \log X$

Red: $Y = X^2$

Blue: $Y = 0.1 X^2$

$$\log Y = \log a + b \log X$$

Red:
$$Y = 3 X^{1/2}$$
 Blue: $Y = X^{1/2}$

Blue:
$$Y = X^{\frac{1}{2}}$$

log Y = log a + b log X

Red: Y =
$$X^{-\frac{1}{2}}$$

Blue: $Y = X^{-1}$

Expected when Y and X involve different dimensions, such as height and weight Weight is related to volume, volume is related to ht³

E.g. Onion weight and diameter, for a sphere V = $(4/3) \pi r^3$

Log Onion Data

Red: $Y = 2^X$ Blue: $Y = \frac{1}{2}^X$

E.g. interest rates, growth, chemical reactions, radioactive decay e.g. annual payments for compounded interest, $A = P(1 + r)^{t}$

E.g. growth of population of San Diego

Population Growth of San Diego

$$Y = a^0 + a_1X + a_2X^2 + a_3X^3 + ...$$

Polynomial curve $Y = a^0 + a_1X + a_2X^2 + a_3X^3 + ...$ X is linear or first degree polynomial X^2 is quadratic or second degree X^3 is cubic or third degree

E.g. lima beans versus date of harvest

Linear fit $r^2 = 0.0015$

Quadratic fit $r^2 = 0.984$

Cubic fit $r^2 = 0.999$

Combined curves

e.g.
$$\log Y = \log a + X \log b + X^2 \log c$$

E.g. exponential fit to San Diego population growth

San Diego Population

Linear: $\log Pop = 3.06 + 0.285 \text{ Yr}$

 $r^2 = 0.974$

Quadratic: log Pop = $2.879 + 0.406 \text{ Yr} - 0.0121 \text{ Yr}^2$ $r^2 = 0.987$

Periodic curves

Fourier curve

 $Y = a_0 + a_1 \cos cx + b_1 \sin cx + a_2 \cos cx + b_2 \sin cx ...$ Where

x = time from start

c = 360/number of units in cycle

e.g. if units are hours, $c = 360/24 = 15^{\circ}$

for first degree curves

 a_0 = weighted mean or central value

A = sqrt $(a_1 + b_1)$ = semiamplitude

 $arctan (b_1/a_1) = phase angle$

e.g. mean monthly temperature

e.g. circadian hormonal variation

Pulses

Waves or curves are additive

- 1. Calculate the overall mean.
- 2. Pulses or peaks can be distinguished by being > 2 standard deviations from the overall mean.
- 3. Mean must be recalculated without pulses after they have been identified and step 2 repeated.
- 4. Keep repeating until no further pulses are identified.