Curvilinear Relations

Correlation and regression are based on linear relationships.
Often a limited range of values can be fit by a straight line, but for a wider range of values the relationship may curve.

To select a curve to fit the data

- look for natural or logical relationships
- use a minimum number of variables

Many natural laws, however, have been discovered by fitting a curve and then explaining the relationship.

A large number of variables can fit any relationship but explain nothing.
Power curve

$$
Y=a X^{b}
$$

$\log Y=\log a+b \log X$
X and Y must be positive to take the log

Red: $Y=X^{2}$
Blue: $Y=0.1 X^{2}$

$\log Y=\log a+b \log X$

Red: $Y=3 X^{1 / 2}$
Blue: $Y=X^{1 / 2}$
$Y=a X^{b}$

Red: $Y=X^{-1 / 2}$
Blue: $\mathrm{Y}=\mathrm{X}^{-1}$

Expected when Y and X involve different dimensions, such as height and weight
Weight is related to volume, volume is related to ht^{3}
E.g. Onion weight and diameter,

$$
\text { for a sphere } V=(4 / 3) \pi r^{3}
$$

Onion Data

Log Onion Data

Log Diameter

Exponential curve

$Y=a b^{x}$
$\log Y=\log a+X \log b$
Semilog relationship since we have $\log Y$ but not $\log X$

Red: $Y=2^{X}$
Blue: $Y=1 /{ }^{x}$
E.g. interest rates, growth, chemical reactions, radioactive decay e.g. annual payments for compounded interest, $A=P(1+r)^{t}$
E.g. growth of population of San Diego

Population Growth of San Diego

Polynomial curve
$Y=a^{0}+a_{1} X+a_{2} X^{2}+a_{3} X^{3}+\ldots$
X is linear or first degree polynomial
X^{2} is quadratic or second degree
X^{3} is cubic or third degree

$Y=13-15 X+(23 / 4) X^{2}-(3 / 4) X^{3}+(1 / 32) X^{4}$

E.g. lima beans versus date of harvest

Cubic fit
$r^{2}=0.999$

Combined curves
e.g. $\log Y=\log a+X \log b+X^{2} \log c$
E.g. exponential fit to San Diego population growth

San Diego Population

Linear: $\log \mathrm{Pop}=3.06+0.285 \mathrm{Yr}$

$$
r^{2}=0.974
$$

Quadratic: $\log \mathrm{Pop}=2.879+0.406 \mathrm{Yr}-0.0121 \mathrm{Yr}^{2}$

$$
r^{2}=0.987
$$

Periodic curves
Fourier curve

$$
Y=a_{0}+a_{1} \cos c x+b_{1} \sin c x+a_{2} \cos c x+b_{2} \sin c x \ldots
$$

Where
$x=$ time from start
$c=360 /$ number of units in cycle
e.g. if units are hours, $c=360 / 24=15^{\circ}$
for first degree curves
$a_{0}=$ weighted mean or central value
A = sqrt $\left(a_{1}+b_{1}\right)=$ semiamplitude
$\arctan \left(b_{1} / a_{1}\right)=$ phase angle
e.g. mean monthly temperature
e.g. circadian hormonal variation

Pulses

Waves or curves are additive

1. Calculate the overall mean.
2. Pulses or peaks can be distinguished by being >2 standard deviations from the overall mean.
3. Mean must be recalculated without pulses after they have been identified and step 2 repeated.
4. Keep repeating until no further pulses are identified.
