ANSC/TPSS 603 Assignment 11 - Transformations

1. Take the following data set discussed in class and perform the ANOVA. Break the treatment SS into main effects of vitamin and species and interactions. Perform appropriate F tests.

Weights, lb, of vitamin-treated and control animals in a RCBD (from Little and Hills)

<u>-</u>	Block				-	
Treatment	I	II	Ш	IV	Total	Mean
Mice-control	0.18	0.30	0.28	0.44	1.2	0.3
Mice-vitamin	0.32	0.40	0.42	0.46	1.6	0.4
Subtotal	0.50	0.70	0.70	0.90	2.8	0.35
Chickens-control	2.0	3.0	1.8	2.8	9.6	2.40
Chickens-vitamin	2.5	3.3	2.5	3.3	11.6	2.90
Subtotal	4.5	6.3	4.3	6.1	21.2	2.65
Sheep-control	108.0	140.0	135.0	165.0	548.0	137.0
Sheep-vitamin	127.0	153.0	148.0	176.0	604.0	151.0
Subtotal	235.0	293.0	283.0	341.0	1152.0	144.0
Total	240.0	300.0	288.0	348.0	1176.0	
Mean	40.0	50.0	48.0	58.0		49.0

- 2. Transform the above data by taking the log of each observation. Recalculate the ANOVA, break down the treatment SS and perform F tests.
- 3. Test the assumptions in the analysis of variance on the transformed data.
 - a. Calculate the errors for each observation, plot them, and describe whether they now meet the assumptions in the ANOVA.
 - b. Perform Bartlett's test for homogeneity of variance. Do the variances meet the assumptions?
 - c. Calculate the ratios of variances and standard deviations to the means. Are they independent of the means?
 - d. Perform Tukey's test for additivity. Are the blocks and treatments additive?
- 4. State your conclusions regarding the effectiveness of the transformation and the results of the experiment.