Example Problems 1

1. An experiment was installed to test 4 rates of Zn on cabbage. There were 3 replicates and the experiment was installed in a randomized complete block design. The yields are given in the table below.

Treatment $\mathrm{kg} \mathrm{Zn} / \mathrm{ha}$	I	Block	
	3.5	II	III
0	3.9	3.8	3.7
5	4.0	4.2	4.4
10	4.3	4.4	4.8
15	4.2	4.9	

A. Calculate the analysis of variance for this data set and perform the appropriate F tests. Write the formula for each statistic calculated.
B. Subdivide the treatment SS into single df using 2 sets of orthogonal comparisons.
C. Calculate the SS for the orthogonal comparisons for trends using the orthogonal comparison method and perform the F tests.
D. Interpret the results.
2. Three varieties of cowpeas were grown in pots arranged in a completely randomized design. The dry matter yields are given in the table below.

Sample	Variety		
	A	B	C
1	2	8	11
2	4	7	10
3	3	9	12

a. Calculate the analysis of variance for the experiment conducted as a CR design.
b. Compare variety A with Others in the analysis of variance.
c. Compare variety B with variety C in the analysis of variance.
d. Perform the appropriate F tests and interpret the results.
e. Write out the analysis of variance (sources of variation and df) for this experiment installed in a randomized complete block design.
3. Provide the ANOVA (sources of variation and df) for an experiment in which 6 varieties of grapefruit were grown in 3 replicates in a randomized complete block design with data collected as indicated.
A. Without sampling.
B. With 5 fruits sampled/variety/rep.
C. With 2 determinations made for acidity per fruit.
D. Indicate the F tests with arrows for the 3 ANOVAs above for the random model.
4. Write our the ANOVA (sources of variation and df) for the following experiments. Subdivide the treatment df where appropriate and indicate the F test(s) with arrows for the fixed and random models.
A. Three (3) varieties of wheat were compared in a completely randomized design with 4 plots of each variety.
B. Four (4) feeding rations were evaluated on 3 breeds of chickens. There were 5 chickens in a pen for each treatment (considered as samples) and the treatments were replicated 4 times. The experiment was installed in a randomized complete block design.
C. Five (5) fruits were taken from each of 4 tangerine trees and each fruit was analyzed for sugar content with 2 determinations being made for each fruit.
D. Three (3) herbicides were evaluated on three (3) varieties of sugarcane. Each treatment was replicated 4 times in a randomized complete block design.
E. The effects of 3 rates of $\mathrm{N}, 2$ rates of P and 4 rates of K in factorial combinations were evaluated with corn. Three (3) replicates were installed in a randomized complete block design.
5. Write out the orthogonal coefficients for the treatment combinations below. Indicate the df for the comparisons.
A. Four (4) varieties of sorghum (A, B, C, D) where variety A is the standard variety for the area.
B. Three (3) levels of $\mathrm{P}(0,100,200 \mathrm{~kg} / \mathrm{ha})$ in factorial combination with 2 levels of $\mathrm{Zn}(0$, $10 \mathrm{~kg} / \mathrm{ha}$). Write out 2 sets of comparisons.
C. Six (6) herbicides are compared. Two are preemergence herbicides and 4 are postemergence herbicides.
D. Five (5) varieties of sweet corn with 2 varieties that are early maturing and 3 varieties that are late maturing.
6. Red clover plants were inoculated with 6 strains of Rhozobium and the nitrogen content of the plants was later determined. Each treatment was replicated 5 times and the experiment was conducted as a completely randomized design. The analysis of variance indicated that there was a highly significant difference between strains. The MSE was 11.79. The treatment means are given in the table below.

	Rhizobium strains						
	1	2	3	4	5	6	
	N content (mg)						
Means	28.8	24.0	14.6	19.9	13.3	19.4	

A. Compare the treatment means using the LSD (use lines and letters).
B. Compare the treatment means using Duncan's multiple range test (use letters).
7. Assuming and LSD of 3.4 compare the following means using lines and letters.

Treatments	K0	K1	K2	K3	K4
Means	12	17	21	22	24

8. Assuming Duncan's shortest significant difference values of

$p=$	2	3	4	5
$\mathrm{D}=$	4.8	5.1	5.4	6.0

Compare the following sets of means.
A. $31,30,25,24,20$
B. $37,33,31,29,25,20$

Example Problems 1 Answers

1. A.

					F Required	
Source	df	SS	MS	F	F.05	F.01
Block	2	0.552	0.276	7.26^{*}	5.14	10.92
Zn	(3)	1.18	0.393	$10.34^{* *}$	4.76	9.78
Zn linear	1	1.0402	1.0402	$27.37^{* *}$	5.99	13.75
Zn quad	1	0.1408	0.1408	3.7		
Zn cubic	1	0.0015	0.0015			
Error	6	0.228	0.038	Error for all F tests		
Total	11	1.96				

1. B.

	Zn				
	0	5	10	15	df
$1^{\text {st }}$ Set					
0 vs others	-3	1	1	1	1
5 vs $(10 \& 15)$	0	-2	1	1	1
10 vs 15	0	0	-1	1	1
$2^{\text {nd }}$ Set					
linear	-3	-1	1	3	1
quadratic	1	-1	-1	1	1
cubic	-1	3	-3	1	1

1. C. $\operatorname{SSlin}=1.0401$
SSquad $=0.1408 \quad$ SScubic $=0.0015$
2. D. There is a highly significant linear response to Zn . Yields increase linearly as Zn applications increase.
3. A.

					F Required		
Source	df	SS	MS	F	F.05	F.01	
Bet. Var.	(2)	98	49	$49.00^{* *}$	5.14	10.92	
A vs Others	1	84.5	84.5	$84.50^{* *}$	5.99	13.75	
B vs C	1	13.5	13.5	13.50^{*}			
Within Var	6	6.0	1.00	Error for all F tests			
Total	8	104.0					

2. B.

	Variety			
	A	B	C	df
A vs Others	-2	1	1	1
B vs C	0	-1	1	1

2. C. SS A vs Others $=84.5 \quad$ SS B vs $C=13.5$
3. D. Dry matter yields of variety A were highly significantly lower than those of varieties B and C, which were not significantly different from each other.
4. E. As RCBD

Source	df	
Block	2	
Variety	2	
Error	4	Error for all F tests
Total	8	

3. A.	Source	df
Block	2	
Variety	5	
Error	10	Error for all F tests
Total	17	

3. B.	Source	df	Error for testing block and (s-1) b v = $4 \times 3 \times 6$, Error
	Block	2	
	Variety	5	
	Expt Error	10	
	Sampling Error	72	
	Total	89	
3. C.	Source	df	
	Block	2	
	Variety	5	Error for testing block and (s-1) b v $=4 \times 3 \times 6$, Erro (d-1) s b v $=1 \times 5 \times 3 \times 6$
	Expt Error	10	
	Fruit (Blk, Var)	72	
	Dtm (Frt/Blk,Var)	90	
	Total	179	
3. D. F tests shown above			
4. A.	Source	df	Random
	Between Var M1	2	M1/M2
	Within Var M2	9	
	Total	11	
4. B.	Source	df	Fixed Random
	Block M1	3	M1/M6 M1/M6
	Trt M2	(11)	M2/M6 M2/M6
	Breeds M3	2	M3/M6 M3/M5
	Rations M4	3	M4/M6 M4/M5
	B x R M5	6	M5/M6 M5/M6
	Expt Error M6	33	M6/M7 M6/M7
	Sample Error M7	192	
	Total	239	
4. C.	Source		df Random
	Trees	M1	3 M1/M2
	Fruit/Tree	M2	16 M2/M3
	Dtm/Fruit/Tree	M3	20
	Total		39

4. D.	Source		df	Fixed
Block	M1	3	M1/M6	R11/M6
Trt	M2	(8)	M2/M6	M2/M6
Herb	M3	2	M3/M6	M3/M5
Var	M4	2	M4/M6	M4/M5
Herb Var	M5	4	M5/M6	M5/M6
Error	M6	24		
Total		35		

4. E.	Source		df	Fixed	Random
Block	M1	2	M1/M10	M1/M10	
Trt	M2	(23)	M2/M10	M2/M10	
N	M3	2	M3/M10	M3/M5	
P	M4	1	M4/M10	M4/M5	
NxP	M5	2	M5/M10	M5/M9	
K	M6	3	M6/M10	M6/M9	
NxK	M7	6	M7/M10	M7/M9	
PxK	M8	3	M8/M10	M8/M9	
NxPxK	M9	6	M9/M10	M9/M10	
Error	M10	46			
Total		71			

5. A.

	Varieties				
	A (std)	B	C	D	df
A vs others	-3	1	1	1	1
B vs C+D	0	-2	1	1	1
C vs D	0	0	-1	1	1

5. B.

	P0Z0	P0Z10	P100Z0	P100Z10	P200Z0	P200Z10	df
P0 vs P100+P200	-2	-2	1	1	1	1	1
P100 vs P200	0	0	-1	-1	1	1	1
Z0 vs Z10	-1	1	-1	1	-1	1	1
P0vsP100+P200xZ	2	-2	-1	1	-1	1	1
P100vsP200xZ	0	0	1	-1	-1	1	1

	P0Z0	P0Z10	P100Z0	P100Z10	P200Z0	P200Z10	df

P linear	-1	-1	0	0	1	1	1
P quadratic	1	1	-2	-2	1	1	1
Z0 vs Z10	-1	1	-1	1	-1	1	1
Plin x Z	1	-1	0	0	-1	1	1
Pquad x Z	-1	1	2	-2	-1	1	1

5. C.

	Preemergence		Postemergence				
	A	B	C	D	E	F	df
Pre vs Post	-2	-2	1	1	1	1	1
A vs B	-1	1	0	0	0	0	1
C vs DEF	0	0	-3	1	1	1	1
D vs EF	0	0	0	-2	1	1	1
E vs F	0	0	0	0	-1	1	1

5. D.

	Early		Late			
	Sf	La	Nb	Ks	Ia	df
Early vs Late	-3	-3	2	2	2	1
Sf vs La	-1	-	0	0	0	1
Nb vs Ks+Ia	0	0	-2	1	1	1
Ks vs Ia	0	0	0	-1	1	1

6.

	Rhizobium strains						
	1	2	3	4	5	6	
	N content (mg)						
Means	28.8	24.0	14.6	19.9	13.3	19.4	

ANOVA
Source
Bet Trt 5

Within Trt 24
Total 29
a. LSD

LSD $=\mathrm{t} .05^{*}$ SED $\quad($ SED $=$ standard error of a difference $)$
SED $=\operatorname{sqrt}((2)(11.79) / 5)=2.17$
$\mathrm{t} .05,24 \mathrm{df}=2.064$
$\mathrm{LSD}=4.48$

Make array of means:

		Rhizobium strains				
	1	2	4	6	3	5
Means	28.8	24.0	19.9	19.4	14.6	13.3
LSD	-					
LSD	a	b	$\overline{\text { bc }}$	c	d	d

b. DMR
DMR a b
b b
c c

$p=$	2	3	4	5
$R=$	1.00	1.05	1.08	1.10
$\mathrm{D}=\mathrm{R}^{*} \mathrm{LSD}$	4.48	4.70	4.84	4.93

7.

Treatments	K0	K1	K2	K3	K4
Means	12	17	$\underline{21}$	22	24
	c	b	a	a	a

8. A.

31	30	25	24	20
a	a	b	b	b

8. B.

37
a ab b bc c

