Analysis of Counts

When data are counts or classes
- dead or alive
- pregnant or not
- healthy or diseased

When continuous data is broken into classes
- income levels

Uses
1. Test hypothetical ratios
2. Determine whether characteristics are inter-related
3. Test whether samples are from different populations

Chi square test

$$\chi^2 = \sum \frac{(\text{Obs} - \text{Exp})^2}{\text{Exp}}$$

Chi-square test provides an approximation for a binomial distribution
Chi-square distribution is continuous and related to normal distribution

Best with:
- large sample size
- ratios close to 1:1
- expected classes all > 5
- use Yates correction when df = 1 and row and column total are predetermined.

Yates Correction

$$\chi^2 = \sum \frac{(|\text{Obs} - \text{Exp}| - 0.5)^2}{\text{Exp}}$$

1. Test hypothetical ratios

Individuals classified in one way into 2 or more classes
Compare to hypothetical or expected ratio
Degrees of freedom = number of classes - 1
Example: frequency of observation of dominant genetic trait

2. Determine whether characteristics are inter-related

Individuals classified in two ways, in r and c classes
Test for independence between classification criteria
Degrees of freedom = (r - 1)(c - 1)
Example: Disease incidence in treated and untreated cattle
Null hypothesis:
- no effect of treatment
- disease incidence is the same in both groups
- disease incidence and inoculation are independent
- probability is product of probabilities of disease and treatment

Disease incidence in cattle

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Disease</th>
<th>Healthy</th>
<th>Diseased</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treated</td>
<td></td>
<td>88</td>
<td>12</td>
<td>100</td>
</tr>
<tr>
<td>Expected</td>
<td></td>
<td>(77)</td>
<td>(23)</td>
<td></td>
</tr>
<tr>
<td>Untreated</td>
<td></td>
<td>143</td>
<td>57</td>
<td>200</td>
</tr>
<tr>
<td>Expected</td>
<td></td>
<td>(154)</td>
<td>(46)</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>231</td>
<td>69</td>
<td>300</td>
</tr>
</tbody>
</table>

\[\chi^2 = \sum \frac{(O_{bs} - E_{xp})^2}{E_{xp}} \]

\[= \frac{(11)^2}{77} + \frac{(11)^2}{23} + \frac{(11)^2}{154} + \frac{(11)^2}{46} = 10.25 \]

\[\chi^2_{05.1} = 3.84 \]

\[\text{df} = (2-1)(2-1) = 1 \]

3. Test whether samples are from different populations

Calculate chi-square for each sample
Calculate chi-square for pooled samples
Difference is chi-square for heterogeneity
Only uncorrected chi-squares are additive
Example: normal and virescent marigolds in 8 progenies
Hypothetical ratio is 3:1 for expected values

<table>
<thead>
<tr>
<th>Progeny</th>
<th>Normal</th>
<th>Virescent</th>
<th>(\text{Chi}^2(3:1))</th>
<th>(\text{Chi}^2(3160:854))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>315</td>
<td>85</td>
<td>3.00</td>
<td>0.023</td>
</tr>
<tr>
<td>2</td>
<td>602</td>
<td>170</td>
<td>3.65</td>
<td>0.094</td>
</tr>
<tr>
<td>3</td>
<td>868</td>
<td>252</td>
<td>3.73</td>
<td>0.578</td>
</tr>
<tr>
<td>4</td>
<td>174</td>
<td>42</td>
<td>3.56</td>
<td>0.575</td>
</tr>
<tr>
<td>5</td>
<td>192</td>
<td>48</td>
<td>3.20</td>
<td>0.348</td>
</tr>
<tr>
<td>6</td>
<td>165</td>
<td>39</td>
<td>3.76</td>
<td>0.723</td>
</tr>
<tr>
<td>7</td>
<td>161</td>
<td>43</td>
<td>1.67</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td>Outcome 1</td>
<td>Outcome 2</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Situation 1</td>
<td>r_1</td>
<td>n_1-r_1</td>
<td>n_1</td>
<td></td>
</tr>
<tr>
<td>Situation 2</td>
<td>r_2</td>
<td>n_2-r_2</td>
<td>n_2</td>
<td></td>
</tr>
<tr>
<td>Situation k</td>
<td>r_k</td>
<td>n_k-r_k</td>
<td>n_k</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Σr</td>
<td>$\Sigma n-\Sigma r$</td>
<td>Σn</td>
<td></td>
</tr>
</tbody>
</table>

Expected value for Outcome 1 and Situation k is $n_k(\Sigma r/\Sigma n)$
Expected value for Outcome 2 and Situation k is $n_k(\Sigma n-\Sigma r)/\Sigma n$

Best estimate of Outcome 1 for Situation 1 is r_1/n_1

For sample mean $= r/n$
Distribution of means is approximately normal for large sample size

Probability of outcome r is p
For binomial distribution
 expected mean value of $r = np$
 variance is $np(1-p)$

For sample mean r/n
 mean value of $r/n = (np)/n = p$
 variance of $r/n = p(1-p)/n$
For large sample
 95% confidence interval is
 \[
 \frac{r}{n} \pm 1.96\sqrt{\frac{p(1-p)}{n}}
 \]
 Estimating p by r/n
 \[
 \frac{r}{n} \pm 1.96\sqrt{\frac{r/n(1-r/n)}{n}}
 \]

Example: Seed germination trial
 $r = 80$ seeds out of $n = 100$ seeds germinate
 $r/n = 0.8$ or 80% germination
 variance is
 \[
 s^2 = \frac{r/n(1-r/n)}{n} = \frac{(0.8\times0.2)}{100} = 0.0016
 \]
 $SD = \sqrt{s^2} = 0.04$
 Confidence Interval = $0.080 \pm 1.96\times0.04 = (0.72, 0.88)$
Difference of two proportions

Population 1 proportion of successes = \(\frac{r_1}{n_1} \)
Population 2 proportion of successes = \(\frac{r_2}{n_2} \)
Difference = \(\frac{r_1}{n_1} - \frac{r_2}{n_2} \)

Variance =
\[
\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}
\]
or
\[
\frac{r_1 / n_1 (1 - r_1 / n_1)}{n_1} + \frac{r_2 / n_2 (1 - r_2 / n_2)}{n_2}
\]

Confidence Interval
\[
\left(\frac{r_1}{n_1} - \frac{r_2}{n_2} \right) \pm 1.96 \sqrt{\frac{r_1 / n_1 (1 - r_1 / n_1)}{n_1} + \frac{r_2 / n_2 (1 - r_2 / n_2)}{n_2}}
\]

Example continued: New process

\(r_2 = 175 \) seeds germinated out of \(n_2 = 200 \)
Mean = \(r_2 / n_2 = 175/200 = 0.875 \)
Variance 2 = \((0.875 \times 0.125)/200 = 0.00055 \)

Improvement in germination
0.875 - 0.8 = 0.075 or 7.5%

Confidence interval

\[
0.075 \pm 1.96 \sqrt{0.0016 + 0.00055}
\]
or (-0.015 to 0.165)

Square of the ratio of the difference to the SD of the difference is equivalent to chi square
\((0.075/0.046)^2 = 2.66 \)

Sample size for estimating proportions

Need an estimate of p
If p = 0.85 or 85%
Variance = \(p(1-p)/n = (0.85)(0.15)/n = 0.1275/n \)

For \(n = 100 \), variance = 0.001275, SE = 0.0357

For SE = 0.01
\[
0.1275/n = (0.01)^2
\]
\[
n = 1275
\]

For p = 0.3 and desired confidence interval ≤ 0.1
To compare two percentages for estimated n and p can calculate confidence interval most precise with equal sample sizes, ie same n null hypothesis is same p

If SE is less than 1/3 of difference desired to detect power is 4 to 1 chance of detecting difference at 5% significance

For \(p = 0.6 \) and \(n = 250 \)

If desired difference = 0.1 or 10%

SE should be \(0.1/3 = 0.0333 \)

\[
\begin{align*}
\sqrt{\frac{2(0.6)(0.4)}{n}} &= \sqrt{\frac{0.48}{n}} = 0.0333 \\
n &= \frac{0.48}{0.0333^2} = 432
\end{align*}
\]