Data Management

Concerns

- 1. Data used to reach conclusions must be of high quality
- 2. Data is expensive. Archive data so that it can be retrieved and interpreted in the future.
- 3. Well managed data makes processing and analysis efficient.

Steps in Data Management

- 1. Plan data management, considering
 - objectives and outputs
 - resources and skills
- 2. Design field data sheets
 - Form layout should match computer file
 - Include date and collectors name and signature
 - Lab notebook should have numbered pages and be permanently bound (data sheets can be glued in)
 - For inventions, each page must be witnessed
- 3. Collect data
- 4. Check data
- 5. Data entry and organization. Common errors
 - data entry errors
 - incorrect conversion or combination of numbers
 - confusing variables and data sets
- 6. Back up data
- 7. Process data

- 8. Check processed data
 - keep a log
- 9. Archive data
 - document
 - describe

Data Management Problems

Technical

- not being able to use software
- not being able to set up data checking procedures
- organizing data in ways not compatible with some uses

Organizational

- multiple copies of files
- no one responsible for checking data
- no feedback on data quality
- no policy on archiving and making data available

Conceptual

- multiple entry of the same data or hand pre-processing of data
- missing links between numbers and information on source of numbers
- no audit trail

Data Checks

- 1. Consistency checks, eg length of pregnancy can not be 12 months unless you are an elephant
- 2. Frequency tables for categorical items
- 3. For real numbers produce summary statistics such as mean, maximum, minimum, inter-quartile range, etc.

- 4. Graphical summaries
 - scatter plot of one item against another shows cases that do not follow the general pattern
 - box-plots are good at showing outliers

Study Questions

- 1. Is the study clearly identified?
- 2. Is there information to help find related studies?
- 3. Are the objectives well-stated?
- 4. Is the location recorded?
- 5. Is the principal investigator clearly shown?

Measurements

- 1. Are the measurements clearly described?
- 2. Are the names clear?
- 3. Are the measurement units clear?
- 4. Is the object that was measured clear (eg plot vs sample)?

Field Layout

- 1. Is the field plan discernible from the data set?
- 2. Is the type of design stated?
- 3. Are the treatments clearly defined?

4. Are the treatment levels clear?

Data

- 1. Are these original or summary data? If summary, where are the originals?
- 2. Is it clear what measurement each value represents?
- 3. Can you tell the design, field layout and/or treatment level for each value?
- 4. When were the values recorded?
- 5. How were missing values recorded?
- 6. For discrete measurements, is each level described clearly?

Graphs

- 1. Title identifies what it is?
- 2. Axes are labeled, including units?
- 3. Categorical values are shown discretely, eg using bars?
- 4. Fitted lines are clearly identified and equations shown?
- 5. Number of data for each point is shown?
- 6. Standard error bars are included?
- 7. Tests of significance are shown?