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Consider n firms locked in inventory competition. They each stock one product, and these products are

substitutes. Customers who encounter a stockout in the store of their first choice, either flock to one of the

other firms in fixed (deterministic) proportions or exit the market. We are interested in whether these firms

can learn the equilibrium behavior over multiple periods by simply observing their own sales and without

knowing anything about each other. Our main result involves proposing two simple learning rules for these

firms and formally establishing that their inventory decisions, if generated by either one of these rules, would

converge with probability one to the Nash equilibrium of the single-period inventory competition game.
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1. Introduction

Our primary concern in this paper is whether multiple firms holding inventories of substitutable

goods and competing for demand on the basis of availability can iteratively learn to mimic Nash

equilibrium behavior merely by observing their own sales and nothing else.

Existence and nature of equilibrium in inventory competition has been studied from a traditional

game theory perspective (Parlar 1988, Lippman and McCardle 1997, Mahajan and van Ryzin 2001,

Avsar and Baykal-Gursoy 2002, Netessine and Rudi 2003, Bernstein and Federgruen 2004, Netessine

et al. 2006, Olsen and Parker 2008), which typically requires the parties to know a lot about each

other and also their own demand not just sales. In this paper we take a learning approach with

minimal informational requirements on the players. Our work extends Burnetas and Smith (2000)

to multiple periods with inventory carryover, which significantly increases the practical relevance
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of learning in game theory to inventory control.

We use the following notation throughout the paper: LHS and RHS stand for “left hand side”

and “right hand side,” respectively; ODE stands for “ordinary differential equation;” iid stands

for “independently and identically distributed;” := states a definition; ≡ means identically equal

to; −i means all indices other than i, i.e., x−i = (x1, . . . , xi−1, xi+1, . . . , xn) for x ∈ ℝn; I {⋅} is the

indicator function, which equals 1 if the condition within brackets holds, and 0 otherwise; FX

denotes the cumulative distribution function of a random variable X; P [⋅] denotes probability;

E [⋅] denotes expectation; ℝ, ℝ+, ℝ++ denote the real, nonnegative real, and positive real numbers,

respectively; for a positive integer n, ℝn denotes the n-fold product ℝ × ⋅ ⋅ ⋅ × ℝ; ℝn
+ and ℝn

++

are defined analogously; (⋅)T denotes transpose; for y, z ∈ ℝn, y ≤ z or z ≥ y means z − y ∈ ℝn
+,

and y < z or z > y means z − y ∈ ℝn
++; 0 and 1 denote all-zeros and all-ones vectors of appro-

priate dimension, respectively; I denotes the identity matrix of appropriate dimension; for x∈ℝn

and p ≥ 1, ∥x∥p := (∣x1∣p + ⋅ ⋅ ⋅+ ∣xn∣p)1/p is the p-norm in ℝn; for a closed and convex set H ⊂

ℝn, and x ∈ ℝn, ΠH [x] := argminx̄∈H ∥x− x̄∥2 is a projection onto H; for x = (x1, . . . , xn) ∈ ℝn,

(x)
+
:= (max(0, x1), . . . ,max(0, xn)); ⌈⋅⌉ denotes integer ceiling; diag (x1, . . . , xn) denotes the diag-

onal matrix with entries x1, . . . , xn; for a function f : S →ℝ, where S is an open subset of ℝn, ∇f

denotes the gradient vector of first-order partial derivatives, and ∇2f denotes the Hessian matrix

of second-order partial derivatives; A⇒B or B⇐A means “A implies B;” A⇔B means “A and

B are equivalent statements.”

2. Model

Our model of inventory competition involves multiple firms and a single product that they each

carry. These products are substitutes: they may or may not be differentiated, but some customers

substitute one for the other. A natural special case of our models is applicable to multiple retailers

carrying exactly the same product. For brevity, our model speaks of a single product as in this

special case, even though they apply to any substitutable products each sold by a separate firm.
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2.1. One-Shot Inventory Competition Model

Consider a collection of firms, labeled as 1, . . . ,N . Each firm i has zero initial inventory and places

replenishment orders without observing the ordering decisions of the other firms. This brings firm

i’s inventory level from zero to yi ≥ 0 at the cost of ciyi, where ci ≥ 0 is the variable order cost per

unit.

Then, firm i receives demand di from the customers for whom firm i is the first choice. We assume

that d := (d1, . . . , dN) is an ℝN
+ -valued exogenous random vector, and its distribution is independent

of the firms’ decisions. Note that we allow d1, . . . , dN to be correlated. If the first-choice demand di

cannot be fully satisfied by firm i, i.e., di > yi, then a fixed proportion ®j,i ∈ [0,1] of excess demand

(di − yi)
+
switches from firm i to firm j. Clearly,

∑
j ®j,i ≤ 1, where ®i,i := 0. (The remainder of

the first-choice demand is lost for all firms.) Therefore, the total demand faced by firm i is

d̄i (y−i) := di +
∑
j

®i,j (dj − yj)
+

(1)

(We will suppress the dependence of d̄i on y−i when there is no possibility of confusion.) After

the realization of demand, including the switching behavior, firm i collects a total revenue of

rimin
(
yi, d̄i

)
+ qi

(
yi − d̄i

)+
, where ri ≥ 0 is the revenue per unit sales, and qi ≥ 0 is the salvage

value of unsold goods per unit. As a result, firm i’s expected profit is given as

gi (yi, y−i) :=E
[
rimin

(
yi, d̄i

)
+ qi

(
yi − d̄i

)+]− ciyi

where the expectation is taken with respect to d. We rewrite firm i’s expected profit in the more

convenient form as

gi (yi, y−i) = (ri − ci)yi − (ri − qi)E
[(
yi − d̄i

)+]
. (2)

We refer the noncooperative game characterized by the expected profits (2) and the strategy sets

ℝ+, . . . ,ℝ+ as the inventory competition game. To ensure sensible parameter values and avoid

trivial cases, we will make the following assumption throughout the paper.

Assumption 1. qi, ci, ri, di,®i,j ∈ℝ+, qi < ci < ri,
∑

ℓ®ℓ,i ≤ 1, for all i, j.
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Our modeling setup and the accompanying assumptions, such as the customer switching behavior,

are standard in the inventory competition literature.

The central concept in noncooperative game theory is that of Nash equilibrium. In our context,

a Nash equilibrium is a collection of firms’ inventory decisions (y∗
1 , . . . , y

∗
N) such that

gi
(
y∗
i , y

∗
−i

)
= max

yi∈ℝ+
gi
(
yi, y

∗
−i

)
, for all i.

In other words, a Nash equilibrium is a decision profile that is optimal for each firm provided that

the other firms do not deviate from their Nash equilibrium decisions. We will henceforth refer to a

Nash equilibrium simply as an equilibrium.

An equilibrium can also be thought of as a fixed point of the best response correspondence

BR= (BR1, . . . ,BRN) which maps ℝN
+ into the subsets of ℝN

+ and is defined by

BRi (y−i) := argmaxyi∈ℝ+gi (yi, y−i) , for all i and y−i ∈ℝN−1
+ . (3)

In other words, y∗ ∈ℝN
+ is an equilibrium if and only if

y∗ ∈BR (y∗) .

We refer the reader to Appendix A for the properties of BR.

It can be shown that the inventory competition game introduced above always possess an equi-

librium; moreover, the uniqueness of equilibrium can be shown under mild conditions; see Parlar

(1988) for two firms, Parlar and Wang (1994) for three firms, Karjalainen (1992), Netessine and

Rudi (2003) for arbitrary number of firms, Lippman and McCardle (1997), Mahajan and van Ryzin

(2001), Netessine et al. (2006) for generalizations of demand generation and substitution models.

For completeness, we reproduce a proof of existence from the literature; see for example Theorem 5

in Lippman and McCardle (1997).

Proposition 1. If Assumption 1 holds, the inventory competition game has an equilibrium.

Proof. Using the definitions of continuity and concavity, it is straightforward to see that (a)

for all i, gi is continuous in ℝN
+ , and (b) for all i and y−i ∈ ℝN−1

+ , gi (⋅, y−i) is concave in ℝ+.
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Furthermore, Appendix A shows that BR maps ℝN
+ into the subsets of a closed convex set Y

defined as (13). Hence, firms’ strategies can be restricted, without loss of generality, to Y . As such,

any inventory competition game satisfying Assumption 1 is a “concave game” in the sense of Rosen

(1965). Theorem 1 in Rosen (1965) shows that concave games possess equilibria.

It appears that, in the case of arbitrary number of heterogenous firms, there are only two papers

dealing with the uniqueness of equilibrium, namely Karjalainen (1992), and Netessine and Rudi

(2003). Karjalainen (1992) is an unpublished report to which we do not have access. Netessine and

Rudi (2003) shows the uniqueness of equilibrium when the demand has (strictly positive) density,

and

max
i

∑
j

®i,j < 1 or max
j

∑
i

®i,j < 1. (4)

We prove the uniqueness under weaker conditions.

Assumption 2. Fd is continuous and 0≤ ŷ < y̌⇒ Fd (ŷ)<Fd (y̌).

Under Assumptions 1 and 2, we establish that BR is a contractive mapping from ℝN
+ into a

compact set; see Appendix A for the proof. This result can be obtained under a relaxation of

Assumption 2 that Fd has the required properties only in a sufficiently large but bounded subset

of ℝN
+ , by following along the same lines of the proof. This relaxation would accommodate, in

particular, some demand distributions with bounded support. However, for ease of presentation,

we prefer to work under Assumption 2.

Proposition 2. If Assumptions 1 and 2 hold, the inventory competition game has a unique equi-

librium; moreover, the best response iterations yℓ+1 =BR (yℓ), for ℓ≥ 1, starting from any y1 ∈ℝN
+

converges to the equilibrium.

Proof. Appendix A shows that, under Assumptions 1 and 2, BR is a contractive mapping from

ℝN
+ into Y , where Y is the compact set defined as (13). Hence, BR must have a unique fixed point

in Y , which can be obtained by the successive approximation iterations starting from an arbitrary

point in ℝN
+ ; see Theorem 1 in Edelstein (1962).
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The results of Proposition 2 can be proven without the continuity of Fd provided

∥®∥ℝN2 < 1 (5)

where ® is the matrix whose (i, j)-th entry equals ®i,j and ∥⋅∥ℝN2 is a matrix norm induced by

a monotone1. norm in ℝN . It is easy to see that (4) is sufficient but not necessary for (5). At

the end of Appendix A, we point out how to modify the proof to show that BR is a contractive

mapping from ℝN
+ into Y , when Fd is strictly monotonic in ℝN

+ and (5) holds.

Having discussed the basics of equilibria, we move on to the issue of how an equilibrium can

arise in an actual play of an inventory competition game involving imperfect firms. Traditionally,

an equilibrium is justified as the predicted outcome of a noncooperative game if it is “common

knowledge” that all players are rational and know the utility functions of their own as well as their

opponents’; see Başar and Olsder (1999), Fudenberg and Tirole (1991). In contrast, an equilibrium

can also be justified if it emerges as the long-term outcome of an iterative procedure whereby

players with limited rationality and information grope for individual optimality by making repeated

decisions based on their observations of the past play. This is the essence of what is known as

the “learning in games” approach for which we refer the reader to the books Young (2004, 1998),

Fudenberg and Levine (1998), Hofbauer and Sigmund (1998), Weibull (1995) and the references

therein. Similarly, this paper takes a learning approach to inventory competition and deals with

the question of whether or not firms can learn to maximize their expected profits in a repeated

inventory competition where each firm 1) observes only its own past decisions and total demands

(or instead only its own past decisions and sales), and 2) knows only its own critical ratio °i :=
ri−ci
ri−qi

,

in particular without any knowledge of any firm’s demand distributions including its own.

2.2. Repeated Inventory Competition Model

We now consider an infinitely repeated inventory competition such that, in each period t ∈

{1,2, . . .}, the same sequence of events described in the one-shot inventory competition model

occur. Namely, in each period, firms simultaneously place inventory replenishment orders which are
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fulfilled instantaneously, then the first-choice demands are realized, next the demand switchings

occur, subsequently the unsold goods are salvaged (hence no inventory is carried to the next period),

and finally the profits are made. We assume that the first-choice demands dt := (d1,t, . . . , dN,t)

satisfy the following assumption.

Assumption 3. {dt}t≥1 is an iid sequence in ℝN
+ with the cdf Fd satisfying Assumption 2.

Let yi,t and di,t denote the inventory level and the first-choice demand of firm i in period t, respec-

tively. Then, d̄i,t := di,t+
∑

j ®i,j (dj,t − yj,t)
+
and si,t :=min

{
yi,t, d̄i,t

}
denote the total demand and

the sales of firm i in period t, respectively. We assume that firm i’s observation history in period t

before choosing yi,t is
(
yi,1, d̄i,1, . . . , yi,t−1, d̄i,t−1

)
(or instead (yi,1, si,1, . . . , yi,t−1, si,t−1)). The obser-

vation history (in particular the past total demands or sales) of a firm contains implicit information

about the past decisions of the other firms. However, each firm does not have any other information

about the other firms. In fact, the firms need not even be aware of each other or the fact that they

are involved in an inventory competition. Hence, we argue that a firm would find it too difficult

to influence the (future) decisions of the other firms. In this setup, it is plausible for each firm to

(incorrectly) assume that it is facing an iid (total) demand with an unknown distribution. There-

fore, from any individual firm’s viewpoint, learning in a repeated inventory competition seems to

be a process of adjusting the inventory level in each period based on the past inventory levels and

the total demands or sales to meet the future demands whose distribution is iid but completely

unknown.

A firm observing its total demands or sales can make inventory decisions not only to increase

its future profits but also to probe for information on the distribution generating its demands.

A firm can also employ a dynamic programming approach to strike an optimal balance between

making profits and probing for more information; this is a viable option primarily when the demand

distribution is known to belong to a parameterized family of distributions. However, we will further

assume that the firms in our setup are myopic, that is, each firm makes an inventory decision in

each period to maximize its expected profit only in the current period. Myopic decision making can
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actually be optimal in certain cases; for example, when future rewards are sufficiently discounted.

Also, firms can choose to be myopic in the interest of simplicity. Our motivation for assuming

myopia in the repeated inventory competition is tractability, since otherwise we would be led to

a learning problem in a dynamic game with quite complicated decision rules for the firms. In the

following sections, we will introduce learning models for repeated inventory competition in view of

the discussion above.

3. Learning in Repeated Inventory Competition

We will start with the well-known idea of gradient ascent, that is, the adjustment of a decision

variable in a direction in which the objective function increases; see Flam (2002). Assume, for the

time being, that the inventory levels of firm i’s competitors are constant at some ŷ−i ∈ℝN−1
+ , i.e.,

y−i,t = ŷ−i for all t ≥ 1, and that the cdf of d̄i,t (ŷ−i) now generating firm i’s demands, denoted

by Fd̄i(ŷ−i), for all t, is known. According to gradient ascent in this case, firm i would adjust its

inventory level yi,t as

yi,t+1 = yi,t + at

∂gi
∂yi

(yi,t, ŷ−i) (6)

where at > 0 is the step size in period t and the gradient ∂gi
∂yi

(yi,t, ŷ−i) in period t equals

∂gi
∂yi

(yi,t, ŷ−i) = (ri − ci)− (ri − qi)Fd̄i(ŷ−i) (yi,t) .

By absorbing the constant (ri − qi) in at, we can rewrite (6) as

yi,t+1 = yi,t + at

(
°i −Fd̄i(ŷ−i) (yi,t)

)
. (7)

It is known that if at is chosen properly then the recursion (7) will drive °i−Fd̄i(ŷ−i) (yi,t) to zero,

at which the optimality is achieved.

We now consider the case where the inventory levels of firm i’s competitors are constant at

ŷ−i but Fd̄i(ŷ−i) is not known. In this case, if firm i had access to the realizations of its total

demands, then it would be reasonable for firm i to replace Fd̄i(ŷ−i) (yi,t) in (7) with the one-sample

approximation

I
{
d̄i,t (ŷ−i)< yi,t

}
. (8)
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The strict inequality in (8) is justified due to the continuity of Fd̄i(ŷ−i), which follows from Assump-

tion 3. Note that the one-sample approximation given in (8) equals

I {si,t < yi,t}

which requires only the sales information. Therefore, a firm i observing its past sales can adjust

its inventory according to the following approximate gradient ascent process

yi,t+1 = yi,t + at (°i − I {si,t < yi,t}) . (9)

The process (9) belongs to the well-known class of stochastic approximation (SA) processes, and

hence its convergence properties can be studied using the theory developed for the SA processes; see

Kushner and Yin (2003), Benveniste et al. (1990), Benäım (1999). For example, if y−i,t is constant

and at satisfies certain conditions such as
∑

t at =∞ and
∑

t a
2
t <∞, then the convergence of (9)

can be established by the ODE method for the SA processes; see Kushner and Yin (2003). One

natural choice for the step size that satisfies the conditions of the SA theory is at =
1
t
.

We should point out that the RHS of (9) needs to be projected onto ℝ+ to prevent yi,t < 0. This

leads to the process

yi,t+1 = (yi,t + at (°i − I {si,t < yi,t}))+ , yi,1 ≥ 0. (10)

Alternatively, we consider a close variant of the process (10) given by

yi,t+1 = yi,t + atyi,t (°i − I {si,t < yi,t}) , yi,1 > 0. (11)

The interpretation of (11) is that, if all the goods are sold in one period then the inventory level in

the next period increases by a factor of at°i; otherwise it decreases by a factor of at (1− °i). The

process (11) has a superfluous rest point at 0. However, it also guarantees yi,t > 0, for all t, whenever

yi,1 > 0 and supt at <mini
1

1−°i
. The process (11) is the same as the one considered in Burnetas and

Smith (2000) for a single firm. An elaborate proof of convergence of (11) for a single firm is given in

Burnetas and Smith (2000) using a generalization of the martingale convergence theory. We claim



10 Alptekinoğlu, Arslan, and Zeinalzadeh: Distribution-Free Learning in Inventory Competition

that the convergence of (11) for a single firm can be established easily by the ODE method for

the SA processes; see Kushner and Yin (2003), Benäım (1999). Our goal in this paper, however,

is significantly more ambitious. Namely, we wish to prove convergence of inventory decisions of

multiple firms in a repeated inventory competition when each firm i adjusts its inventory decisions

according to (11).

The convergence of (11) in the case of a single firm is a very desirable property, however, it

is by mo means sufficient for the convergence of the inventory decisions made by multiple firms

using (11). The literature on learning in games has many examples where more than two players

adjusting their decisions by a learning process which is convergent in the single player case exhibit

non-convergence or even chaos; see Shapley (1964), Jordan (1993), Foster and Young (79–96), Hart

and Mas-Colell (2003), Sato et al. (2002). The reason for this is that, in the case of multiple firms,

the learning processes of the firms are coupled, i.e., firm i’s learning process is affected by firm j’s

learning process and vice versa. Hence, what each firm i is learning to optimize constantly changes

due to another firm j’s learning process. In repeated inventory competition, this means that each

firm using (11) is actually learning to optimize in a non-stationary environment. Furthermore, the

source of this non-stationarity faced by a firm is not a simple one, rather, it is another firm that

is also learning to optimize its own expected profit in a complicated non-stationary environment.

Therefore, there is no a priori reason to expect the convergence of the firms’ decisions in a repeated

inventory competition when each firm adjusts its decisions using (11). It turns out, however, that

the convergence of such a multi-firm learning process can still be proven using some of the recent

advancements in the SA theory; see Kushner and Yin (2003), Benäım (1999).

The following assumption is needed to prove the main result.

Assumption 4. 0≤ at <mini
1

1−°i
, for all t, and

∑
t at =∞,

∑
t a

2
t <∞.

Assumption 4, except the upper bound on at, is one of the standard assumptions on the step

size used in the literature to prove the convergence of the SA processes. The upper bound on at is

necessary to keep the inventory decisions generated by (11) positive; however, it can be removed
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if the inventory decisions are generated by (10).

We now state the main result of this section whose proof is provided in Appendix C.

Theorem 1. Consider a repeated inventory competition model where all firms generate their inven-

tory decisions yt := (y1,t, . . . , yN,t) by either (10) or (11). If Assumptions 1, 3 and 4 hold, then yt

converges, with probability one, to the unique equilibrium of the corresponding one-shot inventory

competition model.

Appendix A: Best Response Function

Claim 1.

1. If Assumption 1 holds, then, for all i and y−i ∈ℝN−1
+ ,

BRi (y−i) =
[
min

{
» : Fd̄i(y−i) (»)≥ °i

}
, inf

{
» : Fd̄i(y−i) (»)>°i

}]
. (12)

Consequently, BR maps ℝN
+ into the subsets of Y defined as

Y :=×i

[
min{» : Fdi (»)≥ °i} , inf

{
» : Fd̄i(0)

(»)>°i
}]

. (13)

2. If Assumptions 1 and 2 hold, then BR has the following properties in ℝN
+ .

(a) BR is single valued, and hence maps ℝN
+ into Y

(b) BR is nonincreasing, i.e., y̌≥ ŷ⇒BR (y̌)≤BR (ŷ)

(c) BR is contractive, i.e., y̌ ∕= ŷ⇒∥BR (y̌)−BR (ŷ)∥ℝN < ∥y̌− ŷ∥ℝN .

Proof.

1. In the literature, the optimization problem in (3), for any i and any y−i ∈ℝN−1
+ , is referred to

as a newsboy problem. It is known that, under Assumption 1, any yi ∈ℝ that belongs to the RHS

of (12) is a solution to such a newsboy problem.

2. We begin by observing that, for all i and y−i ∈ ℝN−1
+ , (a) the strict monotonicity of Fd in

ℝN
+ (in the sense of Assumption 2) implies the strict monotonicity of Fd̄i(y−i) in ℝ+, and (b) the

continuity of Fd implies the continuity of Fd̄i(y−i).
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(a) Assume that, for some i and y−i ∈ ℝN−1
+ , BRi (y−i) is not a singleton. Pick y1

i , y
2
i ∈

BRi (y−i) such that y1
i < y2

i . We must have Fd̄i(y−i) (y
1
i ) = Fd̄i(y−i) (y

2
i ) = °i. However, this contra-

dicts the strict monotonicity of Fd̄i(y−i) in ℝ+. Hence, BR is single valued in ℝN
+ .

(b) It follows from the single-valuedness in ℝN
+ and (12).

(c) Fix y1, y2 ∈ ℝN
+ such that y1 ∕= y2. If

∑
j ®i,j

∣∣y1
j − y2

j

∣∣ = 0, then BRi

(
y1
−i

)
= BRi

(
y2
−i

)
.

Hence, we focus on any firm i for which
∑

j ®i,j

∣∣y1
j − y2

j

∣∣> 0. From the continuity of Fd̄i(yℓ−i)
, we

have, for all ℓ,

P
[
d̄i
(
yℓ
−i

)≤BRi

(
yℓ
−i

)]
= °i. (14)

Also, since

∣∣d̄i
(
y1
−i

)− d̄i
(
y2
−i

)∣∣≤
∑
j

®i,j

∣∣y1
j − y2

j

∣∣ (15)

we have

d̄i
(
y1
−i

)≤BRi

(
y1
−i

) ⇒ d̄i
(
y2
−i

)≤BRi

(
y1
−i

)
+
∑
j

®i,j

∣∣y1
j − y2

j

∣∣ . (16)

Moreover, if ŷ :=
(
0, . . . ,0,BRi

(
y1
−i

)
,0, . . . ,0

)
and y̌ := ŷ+ 1

2

∑
j ®i,j∣y1j−y2j ∣∑

j ®i,j
1, then

ŷ < d≤ y̌ ⇒
⎛
⎝

d̄i
(
y1
−i

) ∕≤BRi

(
y1
−i

)
and

d̄i
(
y2
−i

)≤BRi

(
y1
−i

)
+
∑

j ®i,j

∣∣y1
j − y2

j

∣∣

⎞
⎠ .

Since 0≤ ŷ < y̌, we have Fd (ŷ)<Fd (y̌), due to Assumption 2. Therefore

P

[
d̄i
(
y2
−i

)≤BRi

(
y1
−i

)
+
∑
j

®i,j

∣∣y1
j − y2

j

∣∣
]
>°i. (17)

Now, from (14) and (17), we have BRi

(
y2
−i

)
<BRi

(
y1
−i

)
+
∑

j ®i,j

∣∣y1
j − y2

j

∣∣. By a symmetric argu-

ment, we obtain

∣∣BRi

(
y2
−i

)−BRi

(
y1
−i

)∣∣<
∑
j

®i,j

∣∣y1
j − y2

j

∣∣ . (18)

This leads us to the desired result

∥∥BR
(
y2
)−BR

(
y1
)∥∥

1
<

Ã
max

i

∑
j

®j,i

)
∥∥y1 − y2

∥∥
1
≤
∥∥y1 − y2

∥∥
1
.

Finally, we show how to modify the proof if ∥®∥ℝN2 < 1 but the continuity of Fd, which implies

the continuity of Fd̄i(y−i), is not assumed. Since Fd is strictly monotonic in ℝN
+ , Fd̄i(y−i) is strictly
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monotonic ℝ+, for all i and y−i ∈ℝN−1
+ . Therefore, BR is single valued and non-increasing in ℝN

+ .

To show that BR is contractive, we replace the equality (14) with an inequality where LHS≥RHS.

Since (15)-(16) still hold, we replace the strict inequality (17) with an inequality where LHS≥RHS.

Accordingly, we replace the strict inequality (18) with an inequality where LHS≤RHS. This leads

us to

∥∥BR
(
y2
)−BR

(
y1
)∥∥

ℝN ≤ ∥®∥ℝN2

∥∥y1 − y2
∥∥
ℝN

where ∥⋅∥ℝN is some monotone norm in ℝN and ∥⋅∥ℝN2 is the matrix norm induced by ∥⋅∥ℝN such

that ∥®∥ℝN2 < 1. Therefore, BR is not only a contractive mapping but also a contraction mapping

from ℝN
+ into Y .

Appendix B: Proof of Theorem 1

We provide a detailed convergence proof only for the process (11) as the convergence of the process

(10) can be proven in a completely analogous manner. The only modification worth mentioning is

that the process (10) can hit the boundary of ℝN
+ , and ℝN

+ is positively invariant and contained in

the domain of attraction for the equilibrium under the mean ODE corresponding to (10).

B.1. Proof of convergence of the process (11)

We first consider the truncated process

yt+1 =ΠH [yt + atYt] , y1 ∈ℝN
++ (19)

where H := {y ∈ℝN : 0≤ y≤ kH1} for some constant kH ∈ℝ+ and Yt = (Y1,t, . . . , YN,t) is such that,

for all i,

Yi,t := yi,t (°i − I {si,t < yi,t}) .

Let ℎ (y) = (ℎ1(y), . . . , ℎN (y)) be such that, for all i,

ℎi (y) := yi

(
°i −Fd̄i(y−i) (yi)

)
.

With this, we have

E [Yt ∣ ℱt] = ℎ (yt)
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where ℱt is the sigma-algebra generated by (y1, Y1, . . . , Yt−1). Hence, the “mean” behavior of (19)

is described by the ODE2.

ẏ= ℎ (y) . (20)

We assume that kH is sufficiently large so that H is invariant under (20) and the unique equilibrium

y∗ of the one-shot inventory competition model (see Proposition 2) is in H.

A key result in the literature on the convergence of the SA processes, namely Theorem 2.1

in Chapter 5 of Kushner and Yin (2003), states that the conditions below are sufficient for the

convergence of the process (19) to y∗ with probability one.

1. suptE
[
∥Yt∥22

]
<∞

2. E [Yt ∣ ℱt] = ℎ (yt) for a continuous function ℎ

3. at ≥ 0, for all t,
∑

t at =∞,
∑

t a
2
t =∞

4. yt ∈H ∩ℝN
++, for all t≥ 2

5. y (⋅) ≡ y∗ is an asymptotically stable solution of the mean ODE (20) with the domain of

attraction ℝN
++.

It is clear that conditions (1)-(4) are satisfied. Furthermore, Claim 2 in subsection B.2 shows that

condition (5) is also satisfied. Therefore, if H is sufficiently large, then the process (19) converges,

with probability one, to y∗.

Finally, Claim 3 in subsection B.3 implies that, for any y1 ∈ℝN
++,

lim
kH↑∞

P [0< yt <kH1, for all t ∣ y1] = 1.

Therefore, the process (11) also converges, with probability one, to y∗.

B.2. Asymptotic stability of the mean ODE (20)

Claim 2. Consider the mean ODE (20), ẏ= ℎ (y).

1. For any initial value y (0) ∈ℝN , a solution y (⋅) : [0,∞)→ℝN exists. Moreover, any solution

y (⋅) satisfies

(
y (t0)∈ℝN

++, for any t0 ≥ 0
) ⇒ (

y (t)∈ℝN
++, for all t≥ t0

)
. (21)
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2. y (⋅)≡ y∗, is an asymptotically stable solution (in the sense of Liapunov) with the domain of

attraction RN
++.

Proof.

1. The first statement follows from the continuity of ℎ and the fact that ℎ grows at most linearly.

The second statement follows from the fact that there exists a y0 ∈ℝN
++, such that, for all y ∈ℝN ,

yi ≤ y0
i ⇒ ℎi (y)≥ yi°i/2. (22)

2. Since ℎ (y∗) = 0, y (⋅)≡ y∗ is a solution.

Fix ²∈ (0,1). Consider the following recursions, for ℓ≥ 1,

yℓ+1 = BR
(
yℓ
)

yℓ+1,² = BR
(
yℓ,²

)− (−²)
ℓ
1

where y1 = y1,² = 0. Assume that ² > 0 is sufficiently small so that yℓ,² ∈ℝN
++, for all ℓ≥ 2.

Then, from the monotonicity and the contractiveness of BR, we have

0= y1 < y3 ≤ y5 ≤ ⋅ ⋅ ⋅ ≤ y∗ ≤ ⋅ ⋅ ⋅ ≤ y6 ≤ y4 ≤ y2 (23)

0= y1,² < y3,² ≤ y5,² ≤ ⋅ ⋅ ⋅ ≤ y∗ ≤ ⋅ ⋅ ⋅ ≤ y6,² ≤ y4,² ≤ y2,² (24)

yℓ,² ≤ yℓ − ²ℓ−11, for all odd ℓ≥ 3 (25)

yℓ + ²ℓ−11≤ yℓ,², for all even ℓ≥ 2 (26)

limℓ y
ℓ = y∗ (27)

∥∥yℓ − yℓ,²
∥∥
ℝN ≤ ²

1−²
∥1∥ℝN , for all ℓ≥ 1 (28)

Next, there exist scalars ½1, ½2, ⋅ ⋅ ⋅> 0 such that, for all y ∈ℝN and ℓ≥ 1,

if ℓ is odd,
(
yℓ,² ≤ y and yℓ+1,²

i ≤ yi
) ⇒ ℎi (y)≤−½ℓyi (29)

if ℓ is even,
(
y≤ yℓ,² and yi ≤ yℓ+1,²

i

) ⇒ ℎi (y)≥ ½ℓyi. (30)

To see this, let ℓ≥ 1 be odd and
(
yℓ,² ≤ y and yℓ+1,²

i ≤ yi
)
. Then

°i −Fd̄i(y−i) (yi)≤ °i −F
d̄i(yℓ,²−i)

(
yℓ+1,²
i

)
= °i −F

d̄i(yℓ,²−i)

(
BRi

(
yℓ,²
−i

)
+ ²ℓ

)
. (31)
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Since BRi

(
yℓ,²
−i

)
is the unique solution to °i − F

d̄i(yℓ,²−i)
(⋅) = 0, the RHS of (31) is upper bounded

by −½ℓ for some ½ℓ > 0. The case of even ℓ follows similarly.

Now, let

B²
0 := ℝN

++

B²
ℓ :=

{
y ∈ℝN

++ : yℓ,² ≤ y≤ yℓ+1,²
}
, for all odd ℓ≥ 1

B²
ℓ :=

{
y ∈ℝN

++ : yℓ+1,² ≤ y≤ yℓ,²
}
, for all even ℓ≥ 2.

The sets B²
ℓ , for all ℓ≥ 0, are positively invariant under (20), i.e., any solution y (⋅) of (20) satisfies

(y (t0)∈B²
ℓ , for any t0 ≥ 0) ⇒ (y (t)∈B²

ℓ , for all t≥ t0) .

The invariance of B²
0 follows from (21). To show the invariance of B²

ℓ for ℓ≥ 1, assume that ℓ is odd

and y (t0)∈B²
ℓ . Let t1 ≥ t0 be the first time at which y (⋅) hits the boundary of B²

ℓ . If yi (t1) = yℓ+1,²
i ,

then ẏi (t1)< 0 from (29). If yi (t1) = yℓ,²
i (which can happen only for ℓ > 1), then ẏi (t1)> 0 from

(30). The case of even ℓ is handled similarly.

From (27)-(28), given ²1 > 0, if ² > 0 and ℓ≥ 1 are sufficiently small and large, respectively, then

supy∈B²
ℓ
∥y− y∗∥ℝN < ²1. Also, from (23)-(26), for any ℓ≥ 1, B²

ℓ contains a neighborhood of y∗, i.e.,

{y ∈ℝN : ∥y− y∗∥ℝN ≤ ±1} ⊂B²
ℓ , for some ±1 < 0. Therefore, given any solution y (⋅) of (20) and any

²1 > 0, there exists a ±1 > 0 such that

∥y (0)− y∗∥ℝN ≤ ±1 ⇒ sup
t≥0

∥y (t)− y∗∥ℝN ≤ ²1.

This shows the stability in the sense of Liapunov.

Finally, (22)-(30) also imply that, for any solution y (⋅) of (20) with y (0)∈ℝN
++, there exist finite

scalars T ²
0 (y (0)) , T

²
1 , T

²
2 , ⋅ ⋅ ⋅ ≥ 0 such that

(y (t0)∈B²
ℓ , for any t0 ≥ 0, ℓ≥ 0) ⇒ (

y (t)∈B²
ℓ+1, for all t≥ t0 +T ²

ℓ

)
.

Therefore,

y (0)∈ℝN
++ ⇒ lim

t
y (t) = y∗.
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B.3. Properties of the truncated process (19)

Claim 3. Consider the process (19) as kH ↑∞. For any y1 ∈ℝN
++,

lim
kH↑∞

P

[
sup
i,t

yi,t = kH

∣∣∣∣ y1

]
= 0.

Proof. Fix ²∈ (0,1) and let y2,² be as in the proof of Claim 2. Let

U (y) :=
∑
i

yiÁ
(
yi − y2,²

i

)

where Á :ℝ→ℝ+ is a twice continuously differentiable function satisfying

Á (x) =

⎧
⎨
⎩

0 x≤ 0
increasing 0≤ x≤ 1

1 x≥ 1

For example, Á (x) can be taken as 6x5 − 15x4 + 10x3 for 0 ≤ x ≤ 1. Note that U (y) is twice

continuously differentiable and approximates
∑

i yiI
{
yi ≥ y2,²

i +1
}
. From Taylor’s theorem, we

have

E [U (yt+1)−U (yt) ∣ ℱt] ≤ E [U (yt + atYt)−U (yt) ∣ ℱt]

= at (∇U (yt))
T
ℎ (yt)+

1

2
a2
tE

[
(Yt)

T ∇2U (ȳ)Yt ∣ ℱt

]

where ȳ is on the line segment joining yt and yt + atYt. Since ∇2U (y) vanishes unless y2,² ≤ y ≤

y2,² +1, there exists a constant k1 ∈ℝ+, independent of kH , such that

E [U (yt+1)−U (yt) ∣ ℱt]≤ at (∇U (yt))
T
ℎ (yt)+ k1a

2
t . (32)

Now, let Vt (y) := (1+U (y))
∏∞

s=t (1+ k1a
2
s). It follows from (32) that

E [Vt+1 (yt+1)−Vt (yt) ∣ ℱt]≤ at (∇U (yt))
T
ℎ (yt) .

Since (∇U (yt))
T
ℎ (yt)≤ 0 and V1 (y1)<∞, (Vt (yt) ,ℱt) is a supermartingale; see Theorem 2.2 in

Chapter II of Nevel’son and Has’minskĭı (1973). A well-known inequality for nonnegative super-

martingales (see (1.6) on page 98 of Kushner and Yin (2003)) implies

P

[
sup
t

Vt (yt)≥ kH

∣∣∣∣ y1

]
≤ V1 (y1)

kH

which leads us to the desired result.
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