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Abstract— We consider a non-cooperative multi-stage game
with discrete-time state dynamics. Players have their own
decoupled state dynamics and each player wishes to minimize
its own expected total cost. The salient aspect of our model is
that each player’s stage cost includes a payment (e.g., to a public
utility) proportional to the magnitude of the player’s decision.
The coefficient multiplying each player’s decision, called the
price, is the same for all players and is determined as a function
of the average of all player’s decisions at that stage. Hence,
each player’s cost depends on the decisions of the other players
only through the price. Here, we provide a stochastic and
dynamic generalization of an equilibrium concept adopted in
the economics literature, called the price-taking equilibrium, at
which each player has no incentive to unilaterally deviate from
its equilibrium strategy provided that the player ignores the
effect of its own decisions on the price. In our setup, we allow for
stochasticity in the price process and players observe only the
past price realizations in addition to their own state realizations
and their own past decisions. At a price-taking equilibrium, if
players are given the distribution of the price process as if
the price process is exogenous, they would have no incentive to
unilaterally deviate from their equilibrium strategies. The main
contribution of this paper is to establish such a stochastic and
dynamic game generalization of price taking equilibria. We
first derive the conditions for the existence of a price-taking
equilibrium in the special case where the state dynamics are
linear, the stage cost are quadratic, and the price function is
linear. In this special case, our existence results are constructive
for both finite-horizon and infinite horizon-problems. In the
case where the number of players is taken to infinity, a
price taking equilibrium exists which in turn is a mean-field
equilibrium and is thus actually a Bayesian Nash equilibrium
unlike the setup with a finite number of players. Finally, non-
constructive existence results for price-taking equilibria and
asymptotic equivalence with Nash equilibria are obtained for
the case where the state and action sets are finite.

I. INTRODUCTION

In the economics literature, the concept of price-taking

equilibria has been utilized [1] [2] for static or dynamic

noise-free systems. Such an equilibria decouples competitive

decision makers once they are given a sequence of price vari-

ables for different time stages and if the best responses give

rise to the previously announced price, this would constitute

a price-taking equilibria. An important contribution in this

field due to Radner [1] which establishes the existence of

equilibria for a class of static and dynamic setups.

In this paper, for stochastic dynamic games, we introduce a

stochastic generalization of price-taking equilibrium. Unlike
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much of the existing literature (e.g. [1]), we do not impose

the price process to be deterministic; the process realizations

are causally given to the players, but its distribution is

provided as common knowledge. Thus, at a price-taking

equilibrium, unlike at a Nash equilibrium, players observe

only the past price realizations in addition to their own state

realizations and their own past decisions with the knowledge

of the probability measure induced by the price process; but

the optimal solutions in turn lead to a price process that

is distributionally consistent with the price process given

apriori. The main contribution of this paper is to establish

such a stochastic and dynamic game generalization of price

taking equilibria.

A motivating application area is the Autonomous Demand

Response (ADR) problem on price-sensitive temperature

regulation of multiple (possibly very large number of) units

[3] [4]. In such a system, the real-time price of electricity pt
depends on the system load [5] and there are two common

approaches to determining pt; ex-post pricing or ex-ante

pricing [5]. In ex-post pricing, pt is determined at the

end of the time stage t; whereas, in ex-ante pricing, pt
is determined at the beginning of the time stage t. An

example of ex-post pricing is pt = p
(
∑

i(ℓ
i
t + ui

t) + Lt

)

where Lt is the (random) total power drawn by all non-

participating units during the period t (kW) and p is an

increasing price function mapping the total system load to

the unit price of energy. An example of ex-ante pricing would

be pt = p
(
∑

i(ℓ
i
t−1 + ui

t−1) + Lt−1

)

. In either case, since

the real-time price of electricity depends on the decisions

of all units, the units are facing coupled stochastic optimal

control problems. Furthermore, in a realistic implementation

each unit would have access only to its local information. In

particular, a unit would not have access to any information

about the other units, and may not even know the presence of

the other units. In this context, recently [6] have generalized

the findings in the economics literature in the context of

energy systems where a linear quadratic Gaussian model

is introduced and utilized to obtain optimal centralized and

decentralized solutions under a class of technical assump-

tions requiring coordination among the decentralized players

through a bidding process and assuming that the price

sequence is deterministic.

A. Stochastic Dynamic Price-taking Equilibrium

Consider a decentralized stochastic system with N deci-

sion makers where the i-th decision maker is referred to

as DMi. Each DMi has its own scalar state, scalar control

input, and random disturbance denoted by xi
t, u

i
t, and wi

t at
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the discrete time step t ≥ 0, respectively. Each DMi’s state

evolves as

xi
t+1 = f i

t (x
i
t, u

i
t, w

i
t), t ≥ 0

starting with some (possibly random) initial state xi
0. The

scalar price variable pt at time t ≥ 0 is produced by

pt = κt(u
1
t , . . . , u

N
t , ξt) (1)

where κt is some scalar-valued function and ξt is some

random variable, t ≥ 0.

We assume that the random variables xi
0, wi

t, ξt, for all i,
t ≥ 0, are mutually independent.

Each DMi uses a strategy ηi = (ηi0, η
i
1, . . . ), where ηit is

a mapping from DMi’s information set to a control input at

time t ≥ 0. More precisely,

ui
t = ηit(I

i
t , Pt−1), t ≥ 0

where, Ii0 := xi
0, P−1 := ∅, and for t ≥ 1,

Iit := (xi
0, . . . , x

i
t, u

i
0, . . . , u

i
t−1), Pt−1 := (pi0, . . . , p

i
t−1).

The strategies of all DMs other than DMi is denoted by η−i.

Each DMi wishes to minimize its finite-horizon or infinite-

horizon cost

J i(ηi, η−i) = E

(

T−1
∑

t=0

(βi)t
(

ptu
i
t + git(x

i
t, u

i
t)
)

+ giT (x
i
T )

)

where T ≥ 1 is the length of the horizon, βi ∈ (0, 1) is

DMi’s discount factor, and git is some scalar-valued function

which determines DMi’s cost at each time t ≥ 0. Note that

each DMi’s cost is influenced by the other DMs only through

the price sequence.

Suppose now that the price sequence is an exogenous

(that is, primitive, generated by nature) random sequence

(z0, . . . , zT−1) with a given probability distribution ζ instead

of the endogenous sequence (p0, . . . , pT−1) generated by (1).

By a slight abuse of notation, let

J i(ηi; ζ) := E

(

T−1
∑

t=0

(βi)t
(

ztu
i
t + git

(

xi
t, u

i
t

)

)

+ giT (x
i
T )

)

where

ui
t = ηit(I

i
t , Zt−1), t ≥ 0

with Z−1 := ∅, and for t ≥ 1, Zi
t−1 := (zi0, . . . , z

i
t−1).

In this case, no DM has any influence on the price

sequence and the cost J i(ηi; ζ) is independent of the

strategies of all DMs other than DMi.

Definition 1: Let η = (η1, . . . , ηN ) be a joint strategy and

ζη be the probability distribution of the price sequence gen-

erated by η endogenously through (1). The joint strategy η is

called a distributionally consistent price-taking equilibrium

if

J i(ηi; ζη) ≤ J i(η̃i; ζη), for all i, η̃i (2)

where the price sequence is (incorrectly) assumed to be an

exogenous random sequence with the probability distribution

ζη .

Note that, in a price-taking equilibrium, each DMi ignores

the influence of its own strategy ηi on the price sequence in

minimizing its long-term cost. In contrast, the well-known

concept of Nash equilibrium requires a joint strategy η =
(η1, . . . , ηN ) to satisfy

J i(ηi, η−i) ≤ J i(η̃i, η−i), for all i, η̃i.

where each DMi takes into account the entire influence of

its own strategy ηi on its long-term cost including through

the price sequence.

II. LINEAR QUADRATIC PROBLEMS WITH

FINITELY MANY PLAYERS

A. Finite Horizon Case

Here, each DMi wishes to minimize the finite-horizon

quadratic-cost

E

(

T−1
∑

t=0

(βi)t
(

ptu
i
t + rit(u

i
t)

2 + qit(x
i
t − x̄i

t)
2
)

+ (βi)T qiT (x
i
T − x̄i

T )
2

)

subject to linear price and state dynamics

pt = c0t +
∑

j

cjtu
j
t + ξt

xi
t+1 = aitx

i
t + bitu

i
t + wi

t.

where rit > 0, qit ≥ 0, x̄i
t, c

0
t , cit, a

i
t, b

i
t are given scalars, for

all i, t ≥ 0.

Suppose that DMi instead aims to minimize J i(ηi; ζ) over

ηi for a given exogenous price sequence (z0, . . . , zT−1) with

probability distribution ζ. Let ẑt|t−1 := E(zt|Zt−1), for t ≥
0. DMi’s cost-to-go functions

V i
k (I

i
k, Zk−1) := min

ηi

k
,...,ηi

T−1

E

(

T−1
∑

t=k

(βi)t−k
(

ẑt|t−1u
i
t

+ rit(u
i
t)

2 + qit(x
i
t − x̄i

t)
2
)

+ (βi)T−kqiT (x
i
T − x̄i

T )
2

∣

∣

∣

∣

Iik, Zk−1

)

satisfy, for k = 0, . . . , T − 1,

V i
k (I

i
k, Zk−1) :=min

ui

k

{

ẑk|k−1u
i
k + rik(u

i
k)

2 + qik(x
i
k − x̄i

k)
2

+ βiE
(

V i
k+1(I

i
k+1, Zk)

∣

∣Iik, Zk−1

)}

(3)

with the boundary condition V i
T (I

i
T , ZT−1) := qiT (x

i
T −

x̄i
T )

2.
As an induction hypothesis, assume that V i

k+1
has the

following form, for k = 0, . . . , T − 1,

V i
k+1(I

i
k+1, Zk) = Qi

k+1(x
i
k+1)

2
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+

(

Ci
k+1 +

T
∑

t=k+1

Si
k+1|tẑt|k

)

xi
k+1 +Ki

k+1(Zk)

where Qi
k+1

≥ 0, Ci
k+1

, Si
k+1|t, t = k + 1, . . . , T , are

constants and Ki
k+1

is some function of Zk (ẑT |k := 0
is introduced for notational consistency). V i

T satisfies this

hypothesis with

Qi
T =qiT , Ci

T = −2qiT x̄
i
T Si

T |T = 0, Ki
T = qiT

(

x̄i
T

)2
.

The unique minimizing control in (3) is obtained as

ui
k = f i

kx
i
k +

T
∑

t=k

ni
k|tẑt|k−1 + oik (4)

where

f i
k =

−βiQi
k+1

bika
i
k

rik + βiQi
k+1

(bik)
2

ni
k|k =

−1/2

rik + βiQi
k+1

(bik)
2

ni
k|t =

−βibikS
i
k+1|t/2

rik + βiQi
k+1

(bik)
2
, t = k + 1, . . . , T

oik =
−βibik(Q

i
k+1

ŵi
k + 1

2
Ci

k+1
)

rik + βiQi
k+1

(bik)
2

.

This leads to

V i
k (I

i
k, Zk−1) =Qi

k(x
i
k)

2 +

(

Ci
k +

T
∑

t=k

Si
k|tẑt|k−1

)

xi
k

+Ki
k(Zk−1)

where

Qi
k =rik(f

i
k)

2 + qik + βiQi
k+1(a

i
k + bikf

i
k)

2

Ci
k =2rikf

i
ko

i
k − 2qikx̄

i
k

+ 2βiQi
k+1(a

i
k + bikf

i
k)(b

i
ko

i
k + ŵi

k)

+ βiCi
k+1(a

i
k + bikf

i
k)

Si
k|k =f i

k + 2rikf
i
kn

i
k|k + 2βiQi

k+1(a
i
k + bikf

i
k)b

i
kn

i
k|k

Si
k|t =2rikf

i
kn

i
k|t + 2βiQi

k+1(a
i
k + bikf

i
k)b

i
kn

i
k|t

+ βiSi
k+1|t(a

i
k + bikf

i
k), t = k + 1, . . . , T

Ki
k(Zk−1) =ẑk|k−1

( T
∑

t=k

ni
k|tẑt|k−1 + oik

)

+ qik
(

x̄i
k

)2
+ βiQi

k+1×

E

(

bik

T
∑

t=k

ni
k|tẑt|k−1 + biko

i
k + wi

k

)2

+ βi

(

Ci
k+1 +

T
∑

t=k+1

Si
k+1|tẑt|k−1

)

×

(

bik

T
∑

t=k

ni
k|tẑt|k−1 + biko

i
k + ŵi

k

)

+ βiE
(

Ki
k+1(Zk)|Zk−1

)

.

Since V i
k (I

i
k, Zk−1) satisfies the induction hypothesis, DMi’s

unique optimal strategy with respect to any given exogenous

price sequence (z0, . . . , zT−1) with probability distribution

ζ is given by (4). Furthermore, if each DMi uses its optimal

strategy (4), then the following price sequence is generated:

for t = 0, . . . , T − 1,

pt = c0t +
∑

i

citf
i
tx

i
t +
∑

i

cit

T
∑

k=t

ni
t|kẑk|t−1 +

∑

i

cito
i
t + ξt

(5)

where

xi
t+1 = (ait + bitf

i
t )x

i
t + bit

T
∑

k=t

ni
t|kẑk|t−1 + bito

i
t + wi

t.

Suppose that a joint strategy η = (η1, . . . , ηN ) is a

distributionally consistent price-taking equilibrium, and let

ζη be the probability distribution of the price sequence

generated by η. Each ηi must be optimal with respect to ζη
in the sense of (2). Therefore, each ηi would be of the form

(4) and the resulting price sequence (p0, . . . , pT−1) would

be of the form (5) where the conditional expectations ẑk|t−1

on the right-hand-sides of (4) and (5) would be replaced with

p̂k|t−1 := E(pk|Pt−1), k ≥ t ≥ 0. Since the resulting price

sequence has distribution ζη , the unconditional expectations

p̂0|−1, . . . , p̂T−1|−1 satisfy the linear equations

p̂t|−1 =c0t +
∑

i

citf
i
t x̂

i
t|−1 +

∑

i

cit

T
∑

k=t

ni
t|kp̂k|−1

+
∑

i

cito
i
t + ξ̂t (6)

x̂i
t+1|−1 =(ait + bitf

i
t )x̂

i
t|−1 + bit

T
∑

k=t

ni
t|kp̂k|−1 + bito

i
t + ŵi

t

(7)

for t = 0, . . . , T − 1, where x̂0|−1 = x̂0. Continuing

recursively for ℓ = 1, . . . , T − 1, it is straightforward to

show that the conditional expectations p̂t|ℓ−1 satisfy (6)-(7)

for t = ℓ, . . . , T − 1, i.e.,

p̂t|ℓ−1 =c0t +
∑

i

citf
i
t x̂

i
t|ℓ−1 +

∑

i

cit

T
∑

k=t

ni
t|kp̂k|ℓ−1

+
∑

i

cito
i
t + ξ̂t (8)

x̂i
t+1|ℓ−1 =(ait + bitf

i
t )x̂

i
t|ℓ−1 + bit

T
∑

k=t

ni
t|kp̂k|ℓ−1

+ bito
i
t + ŵi

t (9)

for t = ℓ, . . . , T − 1, where x̂i
ℓ|ℓ−1

is obtained from, t =
0, . . . , ℓ− 1,

x̂i
t+1|ℓ−1 =(ait + bitf

i
t )x

i
t|ℓ−1 + bit

T
∑

k=t

ni
t|kp̂k|t−1

+ bito
i
t + E(wi

t|Pℓ−1)
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pt =c0t +
∑

i

citf
i
t x̂

i
t|ℓ−1 +

∑

i

cit

T
∑

k=t

ni
t|kp̂k|t−1

+
∑

i

cito
i
t + E(ξt|Pℓ−1)

with x̂i
0|ℓ−1

= E(xi
0|Pℓ−1).

Theorem 1: Consider the finite-horizon linear quadratic

problem of this section.

1) A distributionally consistent price-taking equilibrium

exists if and only if the linear equations (8)-(9) can be

recursively solved for ℓ = 0, . . . , T − 1.

2) Any solution p̂t|ℓ−1, 0 ≤ ℓ ≤ t ≤ T − 1, of (8)-(9)

corresponds to a distributionally consistent price-taking

equilibrium η where each ηi is defined by

ui
k = f i

kx
i
k +

T
∑

t=k

ni
k|tp̂t|ℓ−1 + oik (10)

for k = 0, . . . , T − 1.

Proof: Omitted due to space constraints.

Theorem 1 establishes that the existence of a distribu-

tionally consistent price-taking equilibrium in the finite-

horizon linear quadratic case is equivalent to the solvability

of the equations (8)-(9). Furthermore, Theorem 1 constructs

a distributionally consistent price-taking equilibrium corre-

sponding to any solution of (8)-(9). In the next section,

we extend this result to infinite-horizon linear quadratic

problems.

B. Infinite Horizon Case

In this section, we consider a time-invariant system and

let the time horizon T approach ∞. To develop a stationary

solution, we also assume that the information available at

time t with regard to the price process contains data from the

infinite past, that is, each decision maker at time t has access

to Pt−1 = (. . . , p−2, p−1, p0, . . . , pt−1) with regard to the

price process. The price process before the initial time t = 0,

which is P−1, is generated by some exogenous distribution;

whereas, the prices (p0, p1, . . . ) are generated endogenously

as described below. Here, DMi wishes to minimize

E
∑

t≥0

(βi)t
(

ptu
i
t + ri(ui

t)
2 + qi(xi

t − x̄i)2
)

subject to, for t ≥ 0,

pt = c0 +
∑

j

cjuj
t + ξt

xi
t+1 = aixi

t + biui
t + wi

t.

where ri > 0, qi > 0, x̄i, c0, ci, ai, bi 6= 0 are given scalars,

for all i. Moreover, we assume that

(i) Each sequence {ξt}t≥0, {w1
t }t≥0, . . . , {w

N
t }t≥0 is in-

dependent and identically distributed with finite second

moments

(ii) {x1
0, . . . , x

N
0 , E(x1

0|P−1)), . . . , E(xN
0 |P−1)}, {ξt}t≥0,

{w1
t }t≥0, . . . , {wN

t }t≥0 are independent.

Consider an exogenous random price sequence

(. . . , z−1, z0, z1, . . . ) with probability distribution ζ
such that the sequence of conditional expectations

ẑt|t−1 := E(zt|Zt−1), t ≥ 0

is stationary where Zt−1 := (. . . , z−1, z0, . . . , zt−1). Sup-

pose that DMi instead aims to minimize

J i(ηi, ζ) := E
∑

t≥0

(βi)t
(

ẑt|t−1u
i
t + ri(ui

t)
2 + qi(xi

t − x̄i)2
)

where

xi
t+1 = aixi

t + biui
t + wi

t.

This is a standard linear quadratic optimal control problem

with an additional linear control cost. It can be shown that

the value function

V i(xi
0) := min

ηi

0
,ηi

1
,...

E

(

∑

t≥0

(βi)t
(

ẑt|t−1u
i
t + ri(ui

t)
2 + qi(xi

t − x̄i)2
)
∣

∣

∣
xi
0

)

satisfies the Bellman equation. It is straightforward to show

that the value function has the quadratic form

V i(xi) =Qi(x
i)2 + (Ci + SiE(z0))x

i +Ki

where Qi ≥ 0, Ci, Si, and Ki are constants. The minimizing

control is given by

ui = f ixi +miẑ0|−1 + niẑ0 + oi

where

f i = −
βiQibiai

ri + βiQi(bi)2
, mi = −

1/2

ri + βiQi(bi)2

ni = −
βiSibi/2

ri + βiQi(bi)2
, oi = −

βibi(Qiŵi
0 + Ci/2)

ri + βiQi(bi)2

and Qi, Ci, Si satisfy

Qi =ri(f i)2 + qi + βiQi(ai + bif i)2

Ci =2rif ioi − 2qix̄i + 2βiQi(ai + bif i)(bioi + ŵi
0)

+ βiCi(ai + bif i)

Si =f i + 2rif i(mi + ni) + 2βiQi(ai + bif i)bi(mi + ni)

+ βiSi(ai + bif i).

Therefore, DMi’s optimal strategy ηi with respect to ζ is

given by

ui
t = ηit(I

i
t ) = f ixi

t +miẑt|t−1 + niẑ0 + oi.

Let η := (η1, . . . , ηN ). The price sequence generated by the

joint strategy η is

pt = c0 +
∑

i

ci(f ixi
t +miẑt|t−1 + niẑ0 + oi) + ξt (11)

where

xi
t+1 = (ai + bif i)xi

t + bi(miẑt|t−1 + niẑ0 + oi) + wi
t.
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If the conditional expectations p̂t|t−1 = E(pt|Pt−1), t ≥ 0,

of the price sequence (11) is stationary and satisfies

ẑt|t−1 = p̂t|t−1 (12)

then the joint strategy η would be a price-taking equilibrium.

We now focus on the special case where {ξt}t≥0, {wi
t}t≥0,

xi
0, E(xi

0|P−1), for all i, are Gaussian. We rewrite (11) in

the vectorized form

pt = c+HTxt +mpẑt|t−1 + npẑ0 + ξt (13)

xt+1 = Fxt +Mxẑt|t−1 +Nxẑ0 +Ox + wt (14)

where xt := (x1
t , . . . , x

N
t )T , wt := (w1

t , . . . , w
N
t )T , and c,

H , mp, np, F , Mx, Nx, Ox are appropriate dimensional

constants. The conditional means of (13)-(14) satisfy

p̂t|t−1 = c+HT x̂t|t−1 +mpẑt|t−1 + npẑ0 + ξ̂0

x̂t+1|t = F x̂t|t +Mxẑt|t−1 +Nxẑ0 +Ox + ŵ0

where x̂t|t−1 = E(xt|Pt−1), x̂t|t = E(xt|Pt), for t ≥ 0.

After some analysis, we obtain

x̂t+1|t =F x̂t|t−1 + FΣt|t−1H
pt − p̂t|t−1

HTΣt|t−1H +Ψ

+Mxẑt|t−1 +Nxẑ0 +Ox + ŵ0

Σt+1|t =F

(

Σt|t−1 −
Σt|t−1HHTΣt|t−1

HTΣt|t−1H +Ψ

)

FT +W

where W = cov(w0, w0).
To ensure the stationarity of p̂t|t−1, we initialize Σ0|−1 as

Σ0|−1 = Σ̄ = F (Σ̄− Σ̄H(HT Σ̄H +Ψ)−1HT Σ̄)FT +W
(15)

which yields Σt|t−1 = Σ̄, for all t ≥ 0. The steady-state

Riccati equation in (15) has always a nonnegative definite

solution Σ̄ due to the stability of F which follow from the

controllability of (ai, bi) and the observability of (ai,
√

qi),
for all i. Let G := F Σ̄H

HT Σ̄H+Ψ
. We then rewrite the overall

dynamics (generating p̂t|t−1) as

p̂t|t−1 = c+HT x̂t|t−1 +mpẑt|t−1 + npẑ0 + ξ̂0 (16)

where

xt+1 − x̂t+1|t = (F −GHT )(xt − x̂t|t−1)

−G(ξt − ξ̂0) + wt − ŵ0 (17)

xt+1 = Fxt +Mxẑt|t−1 +Nxẑ0 +Ox + wt. (18)

The time-invariant dynamics (17)-(18) are stable1 and

driven by stationary processes. To obtain stationary behavior,

we attempt to initialize (17)-(18) at steady state as well. First,

we initialize the mean dynamics as

x̂0 = x̄ := (I − F )−1((Mx +Nx)ẑ0 +Ox + ŵ0) (19)

which yields x̂t = E(x̂t|t−1) = x̄, for all t ≥ 0. Note that

enforcing ẑ0 = p̂0 in (16) and (19) leads to

x̄ =

(

I − F −
(Mx +Nx)HT

1−mp − np

)−1

1The stability of F implies the stability of F −GHT .

×
(

(Mx +Nx)
c+ ξ̂0

1−mp − np
+Ox + ŵ0

)

(20)

assuming that 1−mp − np 6= 0 and
(

I −
(I − F )−1(Mx +Nx)HT

1−mp − np

)−1

exists.

We wish to initialize to initialize the covariance dynamics at

steady-state. Suppose that the following holds.

Φ0 = Φ̄ = F Φ̄FT +
MxHT (Φ̄− Σ̄)H(Mx)T

(1−mp)2
+W (21)

where Φ̄− Σ̄ is nonnegative definite. Then, for all t ≥ 0,
(

xt − x̂t|t−1

xt

)

∼ N

((

0
x̄

)

,

(

Σ̄ Σ̄
Σ̄ Φ̄

))

(22)

provided (15), (20), (21) hold. This results in the stationarity

of p̂t|t−1, t ≥ 0, due to the stability of the time-invariant

dynamics (17)-(18) driven by stationary processes.

Finally, enforcing (12) leads to the price-taking equilib-

rium strategy, for all i,

ui
t = ηit(I

i
t) = f ixi

t +mip̂t|t−1 + nip̂0 + oi (23)

where

p̂t|t−1 =
c+HT x̂t|t−1 + npp̂0 + ξ̂0

1−mp
(24)

x̂t+1|t =F x̂t|t−1 +G(pt − p̂t|t−1)

+Mxp̂t|t−1 +Nxp̂0 +Ox + ŵ0 (25)

and

p̂0 =
c+HT x̄+ ξ̂0
1−mp − np

. (26)

Theorem 2: Consider the infinite-horizon linear quadratic

problem of this section. Assume that the dynamics are

initialized at steady-state, i.e., (22) holds at t = 0. Then,

the joint strategy η defined by (23)-(26) is a distributionally

consistent price-taking equilibrium.

III. LINEAR QUADRATIC PROBLEMS WITH

INFINITELY MANY IDENTICAL DMS

In this section, we consider the case of infinitely many

identical DMs (N ↑ ∞) where the price at each time t ≥ 0
is determined by the average of the decisions as

pt = c0t + lim sup
N→∞

1

N

N
∑

j=1

uj
t + ξt.

We will assume that (x1
0, x

2
0, . . . ) is independent and iden-

tically distributed (iid). We will only consider the infinite

horizon case and we further restrict our attention to a time-

invariant system as in subsection II-B. In parallel to the

development in subsection II-B, suppose that each DMi

instead aims to minimize its long-term cost with respect to

an exogenous random price sequence (z0, z1, . . . ) which is

iid. Each DMi’s optimal strategy ηi with respect to this price

sequence is obtained as

ui
t = ηit(I

i
t ) = fxi

t + (m+ n)ẑ0 + o
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where f , m, n, o are as in subsection II-B except the

superscript i is dropped throughout. The joint strategy η =
(η1, η2, . . . ) generates the price sequence

pt = c0 + f lim sup
N→∞

1

N

N
∑

i=1

xi
t + (m+ n)ẑ0 + o+ ξt.

If (p0, p1, . . . ) is an iid sequence and ẑ0 = p̂0, then the joint

strategy η would be a price-taking equilibrium. Note that,

under η, each DMi’s state evolves as

xi
t+1 = (a+ bf)xi

t + b(m+ n)ẑ0 + bo+ wi
t.

Since (x1
0, x

2
0, . . . ) is iid, (x1

t , x
2
t , . . . ) is iid, for any t ≥ 0.

Thus, lim supN→∞
1

N

∑N
i=1

xi
t = x̂t := E(x1

t ), for any t ≥
0, and

pt = c0 + fx̂t + (m+ n)ẑ0 + o+ ξt. (27)

If x̂t is initially at steady-state, i.e.,

x̂0 = x̄ =
b(m+ n)ẑ0 + bo+ ŵ0

1− a− bf
(28)

then x̂t = x̄, for all t ≥ 0, which would make (p0, p1, . . . )
an iid sequence. Enforcing ẑ0 = p̂0 in (27), (28) yields

x̄ =
b(m+ n) c

0
+o+ξ̂0

1−m−n
+ bo+ ŵ0

1− a− bf
1−m−n

assuming that

1−m− n 6= 0 and 1− a−
bf

1−m− n
6= 0.

This leads to the price-taking equilibrium strategy, for all i,

ui
t = ηit(I

i
t ) = fxi

t + (m+ n)p̂0 + o (29)

where

p̂0 =
c0 + fx̄+ o+ ξ̂0

1−m− n
. (30)

Theorem 3: Consider the infinite-horizon linear quadratic

problem of this section with infinitely many identical DMs.

Assume that the dynamics are initialized at steady-state, i.e.,

x̂0 = x̄. Then, the joint strategy η defined by (29)-(30) is a

distributionally consistent price-taking equilibrium.

A remark is in order at this point. In the case where the

price is determined by the average decisions of infinitely

many identical DMs, no individual DM can change the

price sequence by unilaterally deviating to an alternative

strategy; therefore, a price-taking equilibrium is also a Nash

equilibrium, which in fact is a mean-field equilibrium [7] [8]

[9].

IV. FINITE-STATE ACTION SYSTEMS

A. Finite Number of Players

The results presented for the linear case apply to finite

state and action problems, which indeed include many ap-

plications including energy systems. Consider the following

setup

xi
t+1 = f(xi

t, u
i
t, w

i
t)

where xi is X-valued, ui
t is U-valued with X and U are

finite sets, each viewed as a subset of R. Furthermore,

the price variable pt is P-valued with dynamics given by

pit = Q( 1

N

∑N
i=1

ui
t), where Q : R → P is a quantization

operation with P being a finite set. The cost per stage is, as

before, gi(xi
t, u

i
t, pt) = (xi

t)
2 + (ui

t)
2 + ptu

i
t. The goal of

each DM is to minimize E[
∑T−1

k=0
gi(xi

k, u
i
k, pk)]. For such

a problem, the following can be established.

Theorem 4: A distributionally consistent price-taking

equilibrium exists.

B. Infinite Number of Players

Here, we consider a discounted cost setup with infi-

nite horizons; i.e., the goal of each DM is to minimize

E[
∑∞

k=0
βkgi(xi

t, u
i
t, pt)] for some β ∈ (0, 1). The following

holds.

Theorem 5: There exists a Nash equilibrium which coin-

cides with a distributionally consistent price-taking equilib-

rium.

V. CONCLUSION

We presented a stochastic and dynamic generalization

of an equilibrium concept, called the distributionally con-

sistent price-taking equilibrium, at which each player has

no incentive to unilaterally deviate from its equilibrium

strategy provided that the player ignores the effect of its

own decisions on the price variables.
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