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Abstract— We consider single-period and infinite-horizon
inventory competition between two firms that replenish their
inventories as in the well-known newsvendor model. Normally
customers have a preference for shopping in one firm or the
other. A fixed percentage of them who encounter a stockout in
the firm of their first choice, though, visits the other firm. This
substitution behavior makes the firm’s replenishment decisions
strategically related. Our main contribution is to introduce
a simple learning algorithm to inventory competition. The
learning algorithm requires each firm (a) to have the knowledge
of its own critical fractile, which the firm can calculate using the
values of its own per unit revenue, order cost, and holding cost;
and (b) to observe its own total demand realizations. They do
not necessarily know their true demand distributions. The firms
need not even have any information about each other, beyond
the implicit information encoded in their own total demand
realizations affected by their competitors’ inventory decisions.
In fact, the firms need not even be aware that they are engaged
in inventory competition. We prove that the inventory decisions
generated by the learning algorithm converge, with probability
one, to certain threshold values that constitute an equilibrium
in pure Markov strategies for an infinite-horizon discounted-
reward inventory competition game.

I. INTRODUCTION

Inventory competition has received significant interest in
the operations management literature. This body of work
focuses on the equilibrium among firms’ inventory decisions
for substitutable products [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12]. For a comprehensive review, the reader
is referred to [10] and [11].

In this paper we introduce a learning element to two-
firm inventory competition. Consider the classic model with
two substitutable products each sold by a firm. The firms
make inventory replenishment decisions for their own prod-
uct. Customers normally shop at either one of these firms.
However, if they encounter a stockout in the firm of their
first choice, a fixed percentage of them visit the other firm,
which makes the firm’s inventory replenishment decisions
strategically related.

Our main distinction from the inventory competition liter-
ature is that we allow firms that are neither perfect decision
makers nor are they fully informed about the competition
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sity of Hawaii at Mānoa, 2540 Dole Street, Honolulu, HI 96822, USA,
ashkan@hawaii.edu
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they are engaged in. They make their inventory decisions
using a simple learning algorithm in hopes of maximizing
their expected discounted profit over the remaining periods.
The learning algorithm requires each firm (a) to have the
knowledge of its own critical fractile, which the firm can
calculate using the values of its own per unit revenue, order
cost, and holding cost; and (b) to observe its own total
demand realizations. They do not necessarily know their
true demand distributions. The firms need not even have any
information about each other, beyond the implicit informa-
tion encoded in their own total demand realizations affected
by their competitors’ inventory decisions. In fact, the firms
need not even be aware that they are engaged in inventory
competition. We prove that the inventory decisions generated
by the learning algorithm converge, with probability one, to
certain threshold values that constitute an equilibrium in pure
Markov strategies for an infinite-horizon discounted-reward
inventory competition game.

We use the following notation throughout the paper:

:= defined as
ℝ, ℝ+, ℝ++ reals, nonnegative reals, positive reals
ℝn, ℝn

+, ℝn
++ ℝ×⋅⋅ ⋅×ℝ︸ ︷︷ ︸

n−times

, ℝ+×⋅⋅ ⋅×ℝ+︸ ︷︷ ︸
n−times

, ℝ++×⋅⋅ ⋅×ℝ++︸ ︷︷ ︸
n−times

FX cumulative distribution function (cdf) of X
fX probability density function (pdf) of X
P [⋅], E [⋅] probability, expectation
y≤ z or z≥ y z− y ∈ ℝn

+ for y,z ∈ ℝn

y < z or z > y z− y ∈ ℝn
++ for y,z ∈ ℝn

0, 1 all-zeros vector in ℝ2, all-ones vector in ℝ2

∥⋅∥p p-norm in ℝn, i.e., ∥x∥p = (∑n
i=1 ∣xi∣p)1/p for x ∈ ℝn

(⋅)+ positive part, i.e., (x)+ := max{0,x} for x ∈ ℝ
→ converges to
A⇒ B A implies B

II. MODELS

In this section we describe single- and infinite-period
inventory competition games, which are both standard in
the literature. We also give characterizations of equilibria in
these games using existing results. What follows is a special
case of the model with fixed order costs, which we describe
in [12]

A. A Single-Period Inventory Competition Model

We start with two firms labeled as firm 1 and firm 2. Each
firm i makes a one-time inventory level decision yi satisfying
yi ≥ xi where xi ≥ 0 denotes firm i’s inventory level before
its decision yi is implemented. Thus, the amount of goods
ordered by firm i equals yi− xi which results in a total cost
of ci(yi− xi) where ci ≥ 0 denotes the per unit cost.
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Subsequently, each firm i faces a demand di ≥ 0 caused by
the buyers who prefer firm i over firm j as their first choices.
If firm i cannot meet the demand di, in other words di >
yi, then a constant fraction αi ∈ [0,1] of the unmet demand
di−yi goes to the other firm j. If firm j has positive inventory
after satisfying its loyal customers, i.e., y j > d j, then firm j
attempts to meet the demand αi(di − yi)

+ switching from
firm i. The part of the demand αi(di− yi)

+ that cannot be
met by firm j’s remaining inventory (y j−d j)

+ drops out of
the system. In short, each firm i’s total demand is given as 1

d̄i(y j) := di +α j(d j− y j)
+. (1)

Once the inventory decision (y1,y2) are made and the total
demands (d̄1(y2), d̄2(y1)) are received, each firm i generates
a total revenue of risi where ri ≥ 0 denotes the per unit price
and si := min(yi, d̄i) denotes firm i’s sales. If a firm i has
excess inventory after receiving d̄i, i.e., yi > d̄i, then firm i
pays a storage cost of hi(yi− d̄i)

+, where hi ≥ 0 is the per
unit storage cost. In sum, firm i’s net profit is given as

ri min(yi, d̄i)−hi(yi− d̄i)
+− ci(yi− xi).

We will write each firm i’s expected profit as

gi(yi,y j;xi) := E
[
ri min(yi, d̄i)−hi(yi− d̄i)

+
]
− ci(yi− xi).

Firm i’s expected profit can be decomposed as

gi(yi,y j;xi) = ḡi(yi,y j)+ cixi (2)

where ḡi(yi,y j) denotes the expected profit when xi = 0, and
it is given as

ḡi(yi,y j) = E
[
ri min(yi, d̄i)−hi(yi− d̄i)

+
]
− ciyi (3)

= (ri− ci)yi− (ri +hi)E
[
(yi− d̄i)

+
]
.

For fixed x := (x1,x2), the above setup leads to a two-
player single-shot simultaneous-move game with the strategy
sets {[x1,∞), [x2,∞)} and utility functions given in (2). This
game will be referred to as Γx. The prevailing notion of
solution in game theory has been that of (Nash) equilibrium.
A pair of inventory decisions (y∗1,y

∗
2) for firm 1 and firm 2,

respectively, constitute an equilibrium of the game Γx if and
only if

y∗i ≥ xi and ḡi
(
y∗i ,y

∗
j
)
= max

yi≥xi
ḡi
(
yi,y∗j

)
, for all i.

An equilibrium strategy (y∗1,y
∗
2) is known as a person-by-

person optimal solution, that is, y∗i is optimal for firm i as
long as the other firm j plays its equilibrium strategy y∗j .

The single-period inventory competition model introduced
above is consistent with the existing literature on this subject.

B. An Infinite-Horizon Inventory Competition Model

Here, we assume that the single-period inventory competi-
tion game described in the previous subsection is repeatedly
played by two firms infinitely many times. Each firm i starts
with some given inventory level xi,1 ≥ 0. Then, the following
events take place within any period t ∈ {1,2, . . .}. First, each

1The dependence of d̄i on y j will not always be made explicit.

firm i makes an inventory decision yi,t satisfying yi,t ≥ xi,t ,
where xi,t denotes firm i’s inventory carried from the previous
period. Second, the demand di,t from firm i’s loyal customers
is realized. Third, a fixed fraction αi ∈ [0,1] of the unmet
demand at each firm i goes to the other firm j. This results
in a total demand of d̄i,t(y j,t) = di,t +α j(d j,t−y j,t)

+ for each
firm i. Next, each firm i makes some profit (or loss) with the
expected profit being equal to gi

(
yi,t ,y j,t ;xi,t

)
, given xi,t . Last,

the excess inventory xi,t+1 =
(
yi,t − d̄i,t(y j,t)

)+ of each firm
i is stored and carried to the next period.

The repeated inventory competition described above leads
to an infinite-horizon dynamic game. We only consider
pure Markov strategies where each firm i’s decision yi,t in
period t depends on (xi,t ,x j,t) (the dependence of yi,t on
x j,t will be removed later). More precisely, each firm i’s
decision yi,t in period t is given by yi,t = ηi,t(xi,t ,x j,t) where
ηi := (ηi,1,ηi,2, . . .) is firm i’s (pure Markov) strategy which
satisfies

ηi,t(x1,t ,x2,t)≥ xi,t , for all t ∈ {1,2, . . .}. (4)

If each firm i uses such a strategy ηi, then firm i’s expected
discounted profit, with the discount factor δi ∈ (0,1), is given
as

Ji(ηi,η j) = lim
T

E

[
T

∑
t=1

δ
t−1
i gi(yi,t ,y j,t ;xi,t)

]
(5)

where yi,t = ηi,t(xi,t ,x j,t), xi,t+1 =
(
yi,t − d̄i,t

)+, and the ex-
pectation above is taken over {(x1,t ,x2,t)}t∈[1,T ]. We will call
a pair of strategies (η∗1 ,η

∗
2 ) satisfying (4) an equilibrium if

and only if, for all i,

Ji(η
∗
i ,η

∗
j ) = max

{
Ji(ηi,η

∗
j ) : ηi satisfies (4)

}
.

We should point out that, in order to make a decision in
period t, a firm i using a pure Markov strategy ηi of the form
introduced above needs access to not only xi,t but also x j,t .
This is clearly an excessive requirement on each firm. In the
next section, we will present an equilibrium strategy which
does not require any firm i to have access to x j,t .

The following conditions are assumed to hold in the
remainder of the paper for simplicity and to avoid trivialities.

Assumption 1: For all i ∈ {1,2},
1) xi ≥ 0, xi,1 ≥ 0, ci ≥ 0, hi ≥ 0, δi ∈ (0,1), αi ∈ [0,1)
2) ri > ci
3) ci +hi > 0
4) d =(d1,d2) is a random vector in ℝ2

+ with a continuous
pdf fd satisfying: for all y ∈ ℝ2

++, fd (y)> 0.
5) {(d1,t ,d2,t)}t≥1 is iid with the common cdf Fd .

Part (1) of Assumption 1 rules out unreasonable cases (αi < 1
is not necessary but it is assumed so that we can use some
existing results in the literature). Part (2) is made to avoid
the trivial case where both firms do not order any goods
under any circumstance. Part (3) is made to avoid another
trivial case where the goods are ordered and stored for free,
therefore, each firm can order any amount of goods with no
cost in which case there would never be any unmet demand.
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Part (4) is needed for the contraction property of the play-
ers’ best response functions (Appendix A). The contraction
property leads to the existence of a unique equilibrium that
can be obtained via the best response dynamics. Part (4)
can be relaxed to accommodate, in particular, some demand
distributions with bounded support. Part (5) is used to show
the convergence of our learning algorithm.

III. EQUILIBRIUM STRATEGIES IN INVENTORY
COMPETITION

In this section, we review the equilibrium strategies, in
particular, the issue of existence of equilibrium strategies in
inventory competition models. We cite some results from the
literature for both the single-period and the infinite-horizon
inventory competition models.

A. The Single-Period Case

We first define the best response function for firms taking
part in the game Γx as follows: BRx = (BRx

1,BRx
2) where, for

all i and y j ∈ ℝ+,

BRx
i (y j) := argmaxyi≥xi

ḡi(yi,y j). (6)

For notational convenience, we use BR to denote BRx when
x = 0. Clearly, a profile y∗ ∈ ℝ2

+ of inventory replenishment
decisions is an equilibrium of Γx if and only if y∗ = BRx(y∗).
We call y∗ ∈ℝ2

+ an interior equilibrium of Γx when all firms
place orders in equilibrium, i.e., x < y∗ = BRx(y∗).

The existence and uniqueness of equilibrium have been
studied in the literature for the case of zero initial inventory
levels, i.e., x = 0. It has been shown that Γ0 always possess
an equilibrium; moreover, the uniqueness of equilibrium
has been shown under mild conditions; see [1] for two
firms, [13] for three firms, [14], [8] for arbitrary number
of firms, [2], [5], [10] for generalizations of demand
generation and substitution models. The following extension
to the case of x ∕= 0 readily follows from Proposition 4 in [8].

Proposition 1: Let Assumption 1 hold.

1) Γx possesses a unique equilibrium which can be ob-
tained by the best response iterations yℓ+1 = BRx

(
yℓ
)
.

2) If y∗ is an equilibrium of Γ0 and x≤ y∗, then y∗ is an
equilibrium of Γx.

3) If y∗ is an equilibrium of Γx and x < y∗, then y∗ is an
equilibrium of Γ0.

Note that, for an interior equilibrium with both firms
placing orders to occur, the initial inventories must be below
an equilibrium of Γ0.

B. The Infinite-Horizon Case

Here, we review some results from [10]. In [10], it is
shown that equilibrium strategies, which are in the form of
constant threshold strategies, can be constructed for firms
engaged in any infinite-horizon discounted-reward inventory
competition. The approach in [10] is to rearrange the terms

in (5) and rewrite it as

lim
T

E

[
T

∑
t=1

δ
t−1
i gi (yi,t ,y j,t ;xi,t)

]

= lim
T

E

[
cixi,1 +

T

∑
t=1

δ
t−1
i g̃i(yi,t ,y j,t)

]
(7)

where, for all i and y ∈ ℝ2
+,

g̃i(y) := (ri− ci)yi− (ri +hi−δici)E
[(

yi− d̄i (y j)
)+]

. (8)

Now, consider a single-period inventory competition model
Γ̃x where firm i’s expected profit function is given by (8),
i.e., Γ̃x is obtained from Γx by replacing hi with hi−δici. Let
ỹ be the equilibrium of Γ̃0 (which exists by Proposition 1),
and let the strategy η̃ be defined by: for all i and t,

η̃i,t (xi,t ,x j,t) := max{ỹi,xi,t} . (9)

The strategy η̃ is a threshold strategy; it satisfies (4),
and requires firm i to observe xi,t , but not x j,t , in
period t. A little thought reveals that, if (x1,1,x2,1) ≤ ỹ,
then η̃ is also an equilibrium strategy for the infinite-
horizon inventory competition where firm i’s expected
discounted profit is (7). This is because 1) there is no
inter-period dependency in (7), other than the constraint
yi,t ≥ xi,t =

(
yi,t−1− d̄i,t−1

(
y j,t−1

))+, and 2) ỹ “equilibrates”
(7) period by period while satisfying the constraint ỹi ≥ xi,t
when ỹi ≥ xi,1.

Proposition 2: Let Assumption 1 hold. If (x1,1,x2,1) ≤ ỹ,
then η̃ defined by (9) is an equilibrium strategy for the
infinite-horizon inventory competition model.

Having discussed the basics of equilibria, we move on to
the issue of how an equilibrium can arise in an actual play
of an inventory competition game involving imperfect firms.

IV. LEARNING IN INFINITE-HORIZON INVENTORY
COMPETITION WITH TOTAL DEMAND OBSERVATIONS

Traditionally, an equilibrium is justified as the predicted
outcome of a noncooperative game if it is “common knowl-
edge” that all players are rational and know the utility func-
tions of their own as well as their opponents’; see [15], [16].
In contrast, an equilibrium can also be justified if it emerges
as the long-term outcome of an iterative procedure whereby
players with limited rationality and information grope for
individual optimality by making repeated decisions based on
their observations of the past play. This is the essence of what
is known as the “learning in games” approach for which we
refer the reader to the books [17], [18], [19], [20], [21] and
the references therein.

Similarly, this paper takes a learning approach to infinite-
horizon inventory competition and deals with the question of
whether or not firms can learn to play an equilibrium strategy
where each firm 1) observes only its own past decisions and
total demands, and 2) knows only its own critical ratio γ̃i :=
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ri−ci
ri+hi+ci

, in particular without any knowledge of any firm’s
demand distributions including its own.

Accordingly, we consider a learning scenario in which
each firm i chooses its inventory level in each period to
approximately maximize the expected profit function (8)
based on its observation history. First, suppose that firm i
wishes to maximize g̃i(⋅,y j,t+1) in period t+1 and somehow
it has access to Fd̄i(y j,t+1) before making its decision yi,t+1

in period t + 1. Then, in view of Appendix A, the optimal
choice for firm i would be

yi,t+1 = max
{

xi,t+1,F−1
d̄i(y j,t+1)

(γ̃i)

}
. (10)

In actuality, firm i does not have access to Fd̄i(y j,t+1) at all.
However, firm i has access to its history of total demand
realizations

(
d̄i,1
(
y j,1
)
, . . . , d̄i,t (y j,t)

)
, in period t+1. There-

fore, we assume that firm i replaces Fd̄i(y j,t+1) in (10) with
the sample distribution defined by

Fi,t (ξ ) :=
1
t

t

∑
k=1

I
{

d̄i
(
y j,k
)
≤ ξ

}
, for ξ ∈ ℝ.

More precisely, each firm i updates its inventory level ac-
cording to

yi,t+1 = min{ξ ≥ xi,t+1 : Fi,t (ξ )≥ γ̃i} , yi,1 ≥ xi,1. (11)

In the literature, the right hand side of the equality in (11) is
called t-th sample quantile at γ̃i, when xi,t+1 = 0. Note that,
if d̄i,k:t denotes the k−th smallest value of d̄i,1, . . . , d̄i,t , then
we can write (11) as

yi,t+1 = max
{

xi,t+1, d̄i,⌈γ̃it⌉:t
}
, yi,1 ≥ xi,1 (12)

where ⌈⋅⌉ denotes the integer ceiling. If firm i generates
its inventory levels yi,t by (12) and firm i’s competitor is
constant at some ŷ j ∈ ℝ+, i.e., y j,t = ŷ j, for all t ≥ 1, then
the convergence of yi,t to an optimal inventory level with
probability one can be obtained by the existing results in the
literature on the convergence of sample quantile processes,
because d̄i,1, d̄i,2, . . . is an iid sequence in this case; see (1.4.9)
in [22]. Whereas, if both firms generate their inventory levels
by (12), then d̄i,1, d̄i,2, . . . is no longer an iid sequence for any
firm i. Hence, in this case, the convergence of the inventory
levels does not readily follow from the existing results in the
literature. Presenting such a convergence result is the main
objective of this section.

We now state the main result of this paper whose proof
is provided in Appendix B.

Theorem 1: Let Assumption 1 hold. The inventory de-
cisions generated by (12) converge, with probability one,
to the unique equilibrium of the single-period inventory
competition model Γ̃0.

Recall, from Proposition 2, that a threshold strategy ob-
tained from an equilibrium of Γ̃0 is an equilibrium strategy
for the infinite-horizon inventory competition (if (x1,1,x2,1)≤

ỹ). In view of this, Theorem 1 implies that firms generating
their inventory decisions by (12) will asymptotically learn to
play an equilibrium strategy in the infinite-horizon inventory
competition.

A. An Illustrative Example

We now verify our main convergent result by numerical
simulation of the process (12) for the following parameter
values: for all i,

ri = 4, ci = 4, hi = 1, δi = 0.9, αi = 0.7.

Moreover, for each i, {di,t}t≥1 is independently sampled
from a random variable uniformly distributed over [0,1]. The
equilibrium of the single-period game Γ̃0 in this scenario is
computed as

(ỹ1, ỹ2) = (0.6644,0.6644).

Figure 1 shows a sample path of (y1,t ,y2,t) generated by
the process (12) with randomly chosen initial conditions
(x1,1,x2,1) and (y1,1,y2,1) for 200 steps (the constant lines
show the respective equilibrium inventory levels (ỹ1, ỹ2)).
Clearly, the sample path shown in Figure 1 indicates con-
vergence to (ỹ1, ỹ2).

Fig. 1. A sample path of (y1,t ,y2,t) generated by the process (12).

y1,t

the constant line is at ỹ1

y2,t

the constant line is at ỹ2

V. CONCLUSIONS

In this paper we inquire whether or not two firms can
learn to play “optimally” in an infinite-horizon discounted-
reward inventory competition game. We introduce a learning
algorithm by which firms can make their inventory replenish-
ment decisions in each period of an infinite-horizon inventory
competition game. The learning algorithm requires each firm
only to know its own critical ratio and to make observations
of its own total demand realizations. It allows the firms
to asymptotically play person-by-person optimal strategies,
i.e., equilibrium strategies for the infinite-horizon discounted-
reward inventory competition game. Our main contribution
is to present a proof of convergence of the firms’ decisions
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to such an equilibrium. Extending this work to the case with
firms observing only their own sales remains as a significant
research problem.

APPENDIX A: BEST RESPONSE FUNCTION

If Assumption 1 hold, BRx satisfies the following in ℝ2
+.

1) For all i and y j ∈ ℝ+,

BRx
i (y j) = max

{
xi,F−1

d̄i(y j)
(γi)

}
where γi =

ri− ci

ri +hi
.

(13)
2) BRx is nonincreasing, i.e., y̌≥ ŷ⇒ BRx (y̌)≤ BRx (ŷ).
3) BRx is a contraction.

APPENDIX B: PROOF OF THEOREM 1

Let the firms’ inventory levels {yt}t≥1 be generated by
(12), i.e., for all i, t,

xi,t+1 :=
(
yi,t − d̄i,t (y j,t)

)+
yi,t+1 := min

{
ξ ≥ xi,t+1 :

1
t

t

∑
k=1

I
{

d̄i,k
(
y j,k
)
≤ ξ

}
≥ γ̃i

}
(14)

with yi,1 ≥ xi,1, for given xi,1 ≥ 0. Let the sequence
{

y1
t
}

t≥1
be identically equal to 0, and let the family of sequences{

yℓt
}

t≥1, for ℓ= 2,3, . . . , be recursively generated by, for all
i, t,

xℓi,t+1 :=
(

yℓi,t − d̄i,t

(
yℓj,t
))+

yℓi,t+1 := min

{
ξ ≥ xℓi,t+1 :

1
t

t

∑
k=1

I
{

d̄i,k

(
yℓ−1

j,k

)
≤ ξ

}
≥ γ̃i

}
(15)

with yℓi,1 = yi,1. For the same sequence of demand realizations
{dt}t≥1, it is easy to see that, for all t,

y1
t ≤ y3

t ≤ ⋅⋅ ⋅ ≤ yt ≤ . . .y4
t ≤ y2

t . (16)

The desired result now follows from (16) and Claim 1 below.

Claim 1:
P
[

lim
ℓ,t

yℓt = ỹ
]
= 1 (17)

where ỹ is the unique equilibrium of the single-period
inventory competition game Γ̃0.

Proof: Let
{

yℓ
}
ℓ≥1 be generated by yℓ+1 = B̃R

(
yℓ
)

with
y1 = 0, where B̃R is the best response function for Γ̃0, which
can be obtained from BR, see Appendix A, by replacing γi
with γ̃i, for all i. From Proposition 1, we have limℓ yℓ = ỹ.
Hence, (17) will follow, if we show that, for all ℓ≥ 1,

P
[
lim

t
yℓt = yℓ

]
= 1. (18)

We show (18) by induction. Clearly, P
[
limt y1

t = y1
]
= 1.

Hence, let us assume that, for some ℓ≥ 1,

P
[
lim

t
yℓt = yℓ

]
= 1. (19)

Since Fd is continuous, a generalization of the well-known
Glivenko-Cantelli theorem (see Theorem 7.1 in [23]) implies,
for all i,

P

[
sup

y j∈ℝ+

sup
ξ∈ℝ

∣∣∣∣∣1t t

∑
k=1

I
{

d̄i,k (y j)≤ ξ
}
−Fd̄i(y j) (ξ )

∣∣∣∣∣→ 0

]
= 1.

(20)

Also, since E [di]> 0 (due to Assumption 1), the strong law
of large numbers implies, for all i,

P

[
∑
t≥1

di,t = ∞

]
= 1. (21)

Now, let Ω be the set of demand realization sequences such
that, for each ω = {dt}t≥1 ∈Ω, and for all i,
∙ given ε > 0, there exists a positive integer tε(ω) such

that supt≥tε (ω)

∥∥yℓt − yℓ
∥∥

1 < ε , and
∙

sup
y j∈ℝ+

sup
ξ∈ℝ

∣∣∣∣∣1t t

∑
k=1

I
{

d̄i,k (y j)≤ ξ
}
−Fd̄i(y j) (ξ )

∣∣∣∣∣→ 0,

and
∙ ∑t≥1 di,t = ∞.

In view of (19)-(21), P [Ω] = 1. We have, for all ω ∈ Ω,
ε > 0, t ≥ tε(ω), i, ξ ∈ ℝ,

1
t

t

∑
k=tε (ω)

I
{

d̄i,k

(
yℓj− ε1

)
≤ ξ

}
≤ 1

t

t

∑
k=tε (ω)

I
{

d̄i,k

(
yℓj,k
)
≤ ξ

}
≤ 1

t

t

∑
k=tε (ω)

I
{

d̄i,k

(
yℓj + ε1

)
≤ ξ

}
which implies that

F
d̄i

(
yℓj−ε1

) (ξ ) ≤ liminf
t

1
t

t

∑
k=1

I
{

d̄i,k

(
yℓj,k
)
≤ ξ

}
≤ limsup

t

1
t

t

∑
k=1

I
{

d̄i,k

(
yℓj,k
)
≤ ξ

}
≤ F

d̄i

(
yℓj+ε1

) (ξ ) . (22)

In addition, we always have, for all ε > 0, i, ξ ∈ ℝ,

F
d̄i

(
yℓj
) (ξ − εᾱ) ≤ F

d̄i

(
yℓj−ε1

) (ξ )
≤ F

d̄i

(
yℓj+ε1

) (ξ )
≤ F

d̄i

(
yℓj
) (ξ + εᾱ) (23)

where ᾱ := maxi αi. Also, note that F
d̄i

(
yℓj
) is uniformly

continuous2. Therefore, from (22)-(23), we have, for all
ω ∈Ω, i,

lim
t

sup
ξ∈ℝ

∣∣∣∣∣1t t

∑
k=1

I
{

d̄i,k

(
yℓj,k
)
≤ ξ

}
−F

d̄i

(
yℓj
) (ξ )

∣∣∣∣∣= 0.

2A continuous cdf is always uniformly continuous.
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This, by the strict monotonicity of F
d̄i

(
yℓj
), implies that, for

all ω ∈Ω, i,

lim
t

min

{
ξ :

1
t

t

∑
k=1

I
{

d̄i,k

(
yℓj,k
)
≤ ξ

}
≥ γi

}

= min
{

ξ : F
d̄i

(
yℓj
) (ξ )≥ γi

}
= yℓ+1

i . (24)

In view of (15) and (24), for each ω ∈ Ω, the following
statement holds true: given δ > 0, there exists a t̂δ (ω) such
that for all t ≥ t̂δ (ω), i,

yℓ+1
i −δ ≤ yℓ+1

i,t+1 ≤max
{

yℓ+1
i +δ ,xℓ+1

i,t+1

}
. (25)

In reference to (25), suppose that

yℓ+1
i,t+1 > yℓ+1

i +δ , for all t ≥ t̂δ (ω).

Then,

yℓ+1
i,t+1 ≤ xℓ+1

i,t+1, for all t ≥ t̂δ (ω)

⇒ xℓ+1
i,t+2 ≤

(
xℓ+1

i,t+1−di,t+1

)+
, for all t ≥ t̂δ (ω)

⇒ lim
t

xℓ+1
i,t = 0

(
since ∑

t≥1
di,t = ∞

)
which leads to the contradiction limt yℓ+1

i,t = 0. Therefore,
for some t̃δ (ω) ≥ t̂δ (ω) and all i, it must be true that
yℓ+1

i,t̃δ (ω)+1 ≤ yℓ+1
i + δ , which implies xℓ+1

i,t̃δ (ω)+2 ≤ yℓ+1
i + δ ,

which in turn implies yℓ+1
i,t̃δ (ω)+2 ≤ yℓ+1

i + δ . As a result, we
must have yℓ+1

i,t+1≤ yℓ+1
i +δ , for all t ≥ t̃δ (ω), i. In conclusion,

we must have, for all ω ∈Ω, δ > 0, t ≥ t̃δ (ω), i,∣∣∣yℓ+1
i,t+1− yℓ+1

i

∣∣∣≤ δ .

This completes the induction and proves (18).
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