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Abstract

We show that fixed order costs fundamentally change wheliege texists an equi-
librium in inventory competition: The single-period gameays has an equilibrium,
but the multiple-period game may not. On the latter point ¥iera@ family of problem
instances with two periods and deterministic demands -itinglsst possible multiple-
period setup — that lack equilibrium. The most intriguingdsnic that contributes to
nonexistence of equilibrium is that a firm can improve itaifetsales by deliberately
creating scarcity.
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1. Introduction

Inventory competition has been a topic of great interespigrations management.
The retailer maxim “stock it and they will come” embodies basic story. Two retail-
ers carrying the same product at the same price would conopetervice, for which
product availability is arguably the most important dimens More broadly, retail-
ers enter into competition with one another by stocking potsl that are substitutes
of each other. Study of equilibrium between retailers’ imegy decisions for substi-
tutable products is what concerns the inventory compatliterature.

To the best of our knowledge, fixed order cost has never beesidered in this

literature, even though it has a prominent place in invgrttogory [1]. Inventory com-
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petition has been studied in single-period settings [2,/5] 4s well as multiple-period
settingsl[6, 17, 18,19, 10]; with two firms|[2, B, 6,18,19/ 10]mfirms [4,.7,.5) 9]; under
deterministic substitution with lost sales|[2] 6,5, 9, 10yarious forms of backlogging
[8] and more sophisticated market dynamics [11]; and undavabilistic substitution
that allows for rich micromodels of consumer response tokstots [3) 4]. Also rele-
vant are monopolistic models of inventory management fbsgtutable products, e.g.,
[12,13])14]. For a more comprehensive review of the invgntompetition literature,
the reader is referred tol[9, 18,/ 11].

In this paper, we consider two substitutable products, eachied by a separate
firm that can replenish its inventory only at a positive fixedey cost. Each product
attracts demand from two sources: customers who preferap ahthe firm that car-
ries it, and customers who ordinarily prefer to shop at theotirm but need to switch
loyalties due to shortage of inventory there. This subititubehavior, modeled by
a fixed percentage of a firm’s excess demand switching to itgpetitor (a standard
abstraction commonly employed in the literature, e.glg[%)]), creates a strategic in-
teraction between the firms’ inventory replenishment dess We study the existence
and nature of equilibrium in single- and multiple-periodrgss resulting from this in-
teraction. Our main point of departure from the literatuwréa allow a non-negligible
fixed order cost for each firm.

We consider only pure Markov strategies. Although mixed lagldavior strategies
are commonly used in broad game theory literature, it is taichagine that a firm
would use randomization to decide on inventory levels; beme presume that firms in
inventory competition use pure strategies only. Markoatsgies are also quite natural
in our context, because beginning inventory levels almostgletely summarize the
history of the game. In fact, an equilibrium that cannot bglemented in Markov
strategies would be quite awkward in that it would result iffiedent inventory deci-
sions for the same state, which may have been reached \géaatiffhistories.

The contribution of our paper is two-fold. We first charaierthe set of single-
period pure-strategy equilibria as a function of the firnmétial inventory levels and
fixed order costs. In particular, we observe that a purdegyaequilibrium always ex-

ists, and for some initial inventory levels multiple puteasegy equilibria may exist.
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We also relate these pure-strategy equilibria to the ptiegegly equilibria in zero-
initial-inventory, zero-fixed-order-cost case (tying oasults to the extant literature),
and give necessary and sufficient conditions for when bothsfione firm, and nei-
ther firm order. We then explore the two-period game with mheteistic demands,
and establish sufficient conditions for nonexistence ofjante-perfect equilibrium in
pure Markov strategies. The nonexistence of equilibriuendn the simplest possible
multiple-period setup suggests that it extends to morergémsdels with multiple pe-
riods and fixed order costs. It is interesting that deman@raimty is not essential for
nonexistence to occur, whereas fixed order costs and naufigriods are. In addition
we offer a simple sufficient condition for existence of eduilm in the two-period
game with deterministic demands. Therefore, to the extettftxed order costs are
a significant driver of inventory decisions, the multipleripd inventory competition
problem must be reexamined in light of our results.

We use the following notation throughout the papef:denotes indices other than
i; I{-} is the indicator function that equalsf the condition within brackets is true, and
0 otherwise;F'x (fx) denotes the cumulative distribution function (densitydtion) of
arandom variabl&; F[-] denotes the expectation operatdr= B means A implies
B”; A & B means A and B are equivalent statements- states a definition; and

(x)* := max(0, z) for a real numbet.

2. Models

In this section we introduce our models of single- and mldtjperiod inventory
competition with fixed order costs. Both models involve twon and a single product
that they each carry. It is best to think of these two prodastsubstitutes. They
may or may not be differentiated, but some customers sutestine for the other. A
natural special case of our models is applicable to two lezgatarrying exactly the
same product. For brevity, our models speak of a single mtoghiin this special case,

even though they apply to any two substitutable products saltl by a separate firm.
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2.1. A Single-Period Inventory Competition Model with Eixerder Costs

Consider firmi € {1,2} with a given initial inventory level; > 0. Both firms
simultaneously act on whether or not to place an inventgpjereshment order, and
how large an order to place. Orders are fulfilled at zero lestegardless of their
size. As a result, firm takes its inventory level from; to y; (y; > z;), incurring a
total cost ofc; (y; — x;) + ki I{y; > x;}, wherec; > 0 is the variable order cost per
unit, andk; > 0 is the fixed order cost.

Then, firm: receives demand, from the customers for whom firmis the first
choice. We assume théd;, d;) are exogenous random variables with nonnegative
support (they can be correlated). If the first-choice demarmnnot be fully satisfied
by firmi, i.e.,d; > y;, then a fixed proportion_; € [0, 1] of excess deman@; — ;)™
switches to firm—i. (The remainder of the first-choice demand is lost for bothdi)

Therefore, the total demand faced by fiins

di(y—i) == d; + a;(d—; —y—i)". (2)

(We suppress the dependencelpbn y_; when there is no possibility of confusion.)
After demand realizations, including the switching bebaviirm i collects a total rev-
enue ofr; min(y;, d;) and incurs inventory holding co#t(y; — d;)*, wherer; > 0

is the revenue per unit sales, alnd> 0 is the holding cost per unit of inventory. The

resulting expected profit for firmis

9i(Yi,y—i; i) := E[rymin(y;, di) — hi(ys — di) " — ci(ys — 2:) — kil {ys > x:}],

where the expectation is taken with respectdo, d>). We rewrite firmi’s expected

profit as
9i(Wiy—ixi) = Gi(Wi,y—i) — kil{y: > x;} + iz, (2
where

Gi(yiy—i) = E[rimin(ys,d;) — hi(y; — di)" = ciyi

= (ri—c)yi— (ri+hi)E [(yi — di)t].
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We denote the noncooperative game with paygffg;, y_;; ;) and strategy sets
{[xs,00)}ieq1,23 With T'*, where the dependence on initial inventory levels=
(z1,x2) and fixed order costs := (k1, k2) is made explicit. Our model is standard
in the inventory competition literature, except the fixedarcost part. We show that
fixed order costs cause some fundamental changes in the mdistrategic interaction

between firms competing on inventory.

2.2. A Multiple-Period Inventory Competition Model withx&d Order Costs

Now consider the same game unfolding over multiple periddsn ; has an ini-
tial inventory levelz; ; > 0. In each period € {1,...,T} four events happen in
the following sequence. At the beginning of periofirm ¢ brings its inventory level
fromz; , up toy,; ; > ;.. Firm< then receives the first-choice demafid, where
(d1t,doy) fort = 1,...,T form an independently (but not necessarily identically)
distributed exogenous random sequence. Inventory stestégny, cause a switching
behavior that yields an effective demandcb_rft(y,iyt) =dip +ai(d_it —y—it)"
for firm 4. Finally, firm i receives its period-profit whose expected value, denoted
BY gi.t (it Y—it; it €qualsy; (yi e, y—ie; i) using [2) with the expectation taken
with respect tqdy +, d2 ¢).

In sum, every period firms make simultaneous inventory réplenent decisions to
meet demands that reflect the customers’ switching behawion i's inventory level
evolves over time according to the equation1 = (y;,: — Czi7t(y—i,t))+- As in the
single-period model, the unmet demand after switchinggs lo

We wish to study the equilibria of the ensuing dynamic nopavative game with
each firmi making its order-up-to decisions accordingi@ = 7; +(x; +, x—; +), where

n; == (mi1,--.,n:,7) s the pure Markov strategy employed by fifraatisfying
7’]1‘7,5(1'1‘7,5, x—i,t) > Tit, forallt e {1, Ceey T} (3)

Under a strategy profilé);, n—;), firm i's total expected profit is given as

T
J(ﬁu z Z gzt yzta —z,t%iﬂz‘,t)



w  Wherey; ; = 0 (Tie, i), Tiirr = (Yip — Jiyt)Jr, andé; € [0,1] is firm i’s dis-
count factor.

A strategy profilgn}, n;) is called an equilibrium if

*
—1

Jilnn”) = max Ji(ni,07;)
for all 4, where the maximization is subject {d (3). We are interestetl refinement

called subgame perfection. An equilibrium strategy prdfifg, »;) is called subgame

perfect if, for anyi € {1,...,T}, the truncated strategy profile

((nifv s 777;:T)5 (77;,57 ceey n;,T))

is an equilibrium of all subgames starting in periodith any nonnegative inventory
levels (i, ;, i, ;) and unfolding over the periodg, ..., T'}. Note that subgame per-
fection requires equilibrium behavior in any subgame stgrivith any nonnegative
s inventory levels(z, z, 7, ;) regardless of whether or n(t, ;, 7, ;) can be reached in
the original game unddm, n5). Henceforth, we use the term “equilibrium” to mean
“equilibrium in pure strategies” in the single-period casel “subgame-perfect equi-
librium in pure Markov strategies” in the multiple-periodse (sometimes referred in
the literature as pure-strategy Markov Perfect Equilitmiuexcept when we use the
1o longer forms for emphasis.

We impose the following assumption throughout the papevaoaddrivial cases.

Assumption 1. Fori € {1,2}, (@) x;,1, ¢, hi, k; > 0andoy, 6; € [0,1]; (b) 7 > ¢;
(©) ci + h; > 0; (d) d;a,a—; < 1; (e) di» have nonnegative support and finite mean

for all ¢t.

us  Part (a) of Assumption]1 ensures sensible parameter valugatt (b) does not hold,
i.e.,r; < ¢;, then placing no orders would be optimal for figmegardless of the actions
taken by firm—i, which renders the entire game trivial. If part (c) fails toldh i.e.,
¢; = h; = 0, then ordering an unbounded amount could be optimal for#jimwhich
case there would be no inventory competition as custometddiave no reason to

120 Switch between firms. Part (d) is a technical assumption rfadexpositional clarity;
our results can be extended to the case Witk o; = a_; = 1. Part (e) rules out the

possibility of observing negative demand or unboundechugdtorder quantity.
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3. Equilibrium in Inventory Competition with Fixed Order Costs

We now present our analyses of existence and nature of leguiifi in single- and

multiple-period inventory competition with fixed order tas

3.1. Single-Period Analysis

First, we use the supermodular games framework to estahkstxistence of equi-
librium in the single-period gam¢Z.7). We then characterize the equilibrium. In par-
ticular, we relate the equilibria of the general model witly aet of initial inventories
and fixed order costs to the equilibria in zero-initial-int@ry, zero-fixed-order-cost
case. We also give necessary and sufficient conditions fenveguilibria with both
firms, one firm, and neither firm placing orders occur. (Thefsare in Appendix A.)

We first define the best response correspondence for fiaking part in the game

I'*:* as follows:

BRf’k(y_i) = argma, ., 00) 19: (i, y—i) — kil{yi > i} + cizi}

where the dependence on initial inventories: (z1, 22) and fixed costg = (kq, ko)
is made explicit. Note thaBR{"* (y_;) = argma, (o o) i (i, y—i)-

Firm i has two options: place an order, in which case ficannot gain an expected
profit any higher thafmax,, >0 3:(yi, y—:) — ki + c;xz;}; place no orders and gain
{gi(xi,y—i) + c;x;}. Therefore, as commonly observed in inventory replenisitime
problems with fixed order cost, firmwill want to place an order only if its inventory

is above a threshold. We define that threshold as follows:

si(y—i) == max {Zz <min BR(y—i) : gi(zi,y-i) < I;lg)égi(yu y—i) — ki
(4)
The constraint; < min BR?’O(y_i) is needed for there may exist multiple optima for

the subproblenmax,,>o §i(y:, y—i). Firmi must then use the best response

BR?"O(yfi), if 2; < s;(y—s)
BRf’k(yfi) = {Il} U BR?"O(yfi), if 2 = si(y—:) ®)
i, if 2 > si(y—s)
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Clearly, a profiley* := (y},ys) of inventory replenishment decisions is an equi-
librium of T** if and only if y; € BRf”“(yji) for all <. We call(y3,y3) aninterior
equilibrium of I'*-* when both firms place orders in equilibrium, i.g;, > =; and
yr € BRV*(y*,) for all i.

—1

Next, we observe that the expected profit of each firm obeyaiogsroperties.
Lemma 1. Consider any gamgE®-* arising from the single-period inventory competi-

tion model with fixed order costs. The expected pgefij;, y—;; x;) for eachi € {1, 2}

possesses the following properties.
1. 9i(yi, y—s; z;) IS Upper semi-continuous ix.
2. Foranyy; > 4; > 0, gi(yi, y—i; i) — 9i(Fi, y—i; ;) IS nonincreasing iry_;.
3. Given an arbitrary constang € (74, 1), there exists a finite bound? :=
inf{>0: Fy,1a,d4_,(§) > p} such that, for allz;, y_; > 0,

Yi € argmMax, ¢, o) 9i(Yi, Y—is i) = ¥i € [2;, max(z;, V)]

We are now ready to state our main result regarding the existand nature of
equilibrium in single-period inventory competition withxéid order costs. Lemnid 1
implies thatI'** is a supermodular game, where each firm’s strategy belongs to
compact interval and each firm’s expected profit is upper sgmiinuous with respect
to its own order-up-to level. It is well-known that such gantave equilibria [15]. We

state this and show several characteristics of the egjailibr

Theorem 1. Consider any gamE®* arising from the single-period inventory compe-

tition model with fixed order costs.

1. [Existence] I'*** has a nonempty equilibrium set.
2. [An Equilibrium with Both Firms Ordering]
(@) An interior equilibrium ofl'®% | if it exists, is an equilibrium of *-°.
(b) Lety* be an equilibrium off'%%. Then,y* is an interior equilibrium of
r=k if and only ifz; < s;(y*,) andz; < y; forall i.
3. [An Equilibrium with One Firm Ordering] For any firmé, y* = (2, y*,) # «

< s_i(xi), and

is an equilibrium of ™" if and only ifz; > s;(y*;), v—;

z_; <y*, € BRY)(x;).
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4. [An Equilibrium with Neither Firm Ordering] * = « is an equilibrium of

r=k if and only ifz; > s;(z—;) for all 4.

For an interior equilibrium with both firms placing ordersaocur, their initial in-
ventories must be below their order thresholds. If botlidhitventories exceed the
threshold, then neither firm orders in equilibrium. The rarmy two (hybrid) situa-
tions result in an asymmetric equilibrium with only one oé firms placing an order -
the one with below-threshold initial inventory. Exampldldstrates these equilibria in

the space of initial inventory levels.

Example 1. Consider a problem instance with parametéss = k> = 0.2, a; =
ag = 0.5, h1 = hg = ¢ = co = 1,71 = ro = 3, and exponential first-choice
demands with meah, i.e.,d; andds are independent and identically distributed with
densitye=¢1{¢ > 0}. In this case,BRY" and BR)" are single valued. Moreover,
y*0 is a singleton, the unique point at whidBR?"" and BRY" intersect. The top
graph in Figure[l shows two regions, one representing theoketfor which 3% is
an equilibrium, and the other the set offor which z is an equilibrium, i.e., neither
firm orders. The middle graph shows the region for w}“(imh, BRS’O(xl)) #£risan
equilibrium, i.e., firml does not order but fir®@ orders up to IeveBRg’O(:cl) > To.
The bottom graph shows the reverse possibility in which firty1 orders, up to level
BR?’O(:CQ) > z7. Note that these regions overlap; for certainthere exist multiple
equilibria (up to three) that belong t{yovo, (z1, BRy"(21)), (BRY(a2), IQ)} .

3.2. Multiple-Period Analysis

In this subsection, we show that no equilibrium may existhi@ tultiple-period
game with fixed order cost§Z.2). To this end we choose the simplest possible setup:
two periods and deterministic demands. The nonexisterstdtreinges on a series
of conditions that create conflicting incentives on whentee. Its building blocks
(Claims 1-6) and a formal proof that puts them all togetherssented in Appendix

B. Here we first state the result and then give an intuitive@antof why it is true.
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Figure 1: The equilibrium set as a functionsofn Example 1.

Proposition 1. The two-period inventory competition game with fixed oraests does
not have a subgame-perfect equilibrium in pure Markov styas if the following con-
o ditions are satisfied:

1. d;; are deterministic for alk, ¢;
ki

Ti—C4

> 0 for all %;

2. d/i71 — rikjci > T anddi,g —
3. d;r; > ¢; + h; forall 4;
4. (Ci + hi)di)g < 51(/% + Cidi72) for all 4;

105 5. For some;

10



k_;

T—i—C—;

(b) (Cz(l — 51) —|— hi)di,2 + (1 — 51)]{31 > (7’1' — CZ)(l — 51'0&1'0471')((11'71 — xiyl).

(@) a—i(din —xi1) < ,and

In words, the five conditions, which define a family of problerstances, say that:

1. Demands are deterministic;

2. In both periods, satisfying first-choice demand is endogiover the fixed order
cost;

3. Saving first-period inventory for the second period istivéine cost;

4. If already placing an order, itis less costly to order someee in period 1 to meet
second-period demand, than to place another order in p2riddhe expense of
a fixed order cost;

5. For at least one of the firms, if it were to place no ordersdriqul 1, then (a)
profit potential from switchers to the other firm is not enoughcover fixed
order cost for the other firm in period 2, and (b) inventorydinog cost savings
that come from not having to carry inventory from period 1 évipd 2 outweigh

the profits lost in period 1.

The proof of Propositionl1 advances a sequence of five majonaents regarding

an equilibrium of the two-period game — should one exist +mékd to contend with:

e In period 2, firms either do not order, or order up to their sekcperiod demand
regardless of their inventory levels at the beginning ofqeeR. This is simply

due to subgame perfection .

e In period 1, firms choose one of three options: (a) order uptal two-period

demand, (b) order up to period 1 demand, or (c) do not oragey, i.
Yi,1 € {Ji,l (y—i,l) + sz(y—i,z), Czi,l (y—i,l)a xi,l}-

Although intuitively appealing due to piecewise linearitfyexpected profits in
each period, this is by no means obvious, because a firm’'sidadh period 1
has some bearing on the total demand that it faces in peridd fact, we use

Conditions[(1){(B) to prove it.

11



220 e Firm i cannot take option (b) in equilibrium, because by Condif@nit would

rather place a bigger order in period 1 to cover for secorribgelemand as well.

e Option (c) cannot occur in equilibrium either, because Qo () creates

enough incentive for each firm to order in period 1.

e The only remaining candidate for equilibrium, both firmsitakoption (a), can
225 also be ruled out. By Condition (5) at least one of the firmsdragicentive to

deviate from this strategy.

The most interesting dynamic that contributes to nonemeseoccurs when both
firms attempt to order their total two-period demand in petiqthe last item above).
This strategy is not an equilibrium, because at least ondefitms can profitably

20 deviate from it by creating a deliberate scarcity — by noteoirt at all in period 1.
The reason is subtle. Suppose firmeviates. By placing no orders in period 1, fifm
would give up some of its demand and lose profits. Howeveaiitfully recover this
loss in period 2. Some of the demand unmet by fiimperiod 1 would switch to firm
—i. As a result, firm—i would have less inventory, namely_; » — a_;(d; 1 — ;1))

25 as opposed td_; o, at the beginning of period 2. This would result in firni failing
to fully meet its demand in period 2, as it would not want tocglanother order in
period 2 by Condition[(Ba). Hence, some of the demand unméitroy—: in period
2, namelya;o—;(d; 1 — x;,1), would switch to firmi. Also to firm i's advantage,
it would avoid the cost of holding inventory for meeting sedeperiod demand,; ».

20 Condition [GBb) ensures that inventory holding cost savimggsveigh the profits given
up. In sum, the deviating firm (firn) is able to generate a strategic advantage out of
scarcity that it deliberately introduces in period 1. Théomunate byproduct of this
strategic behavior is that both firms ordering their totad4period demand in period 1
cannot be an equilibrium.

25 A few final observations about the robustness of Propodiiisrin order. First, the
family of problem instances for which nonexistence of eiilim is assured is quite
large. To illustrate this, we offer a special case of the peoiod model as an exam-
ple, and graph the regions of parameter values that guaranteexistence (Figuleé 2).

The result is robust to parameter perturbations, includieigrministic perturbations

12
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to demands. Furthermore, the nonexistence can also be [fpreséablished fore-

equilibrium (the details are available from the authord)ed-equilibrium is a simple

extension of Nash that requires no player gaining more ¢ianunilaterally deviating
from the Nash strategy. Hence, the nonexisteneeasfuilibrium is a further indication

that Propositiofill is a robust result. It in fact suggestsattdose cousin of Proposition

may hold true under stochastic perturbations in demand.

Example 2. Consider the case with no initial inventories,; = 0, no discounting for

period 2,4; = 1, and constant demand, ; = d, for all 7,¢ and for some constant

d > 0. Conditions[(R){(#) of Propositidd 1 can then be reduced to

k; h;
1> ! > for all i
(’f‘i — Ci)d ry — C;
and Conditions[{5a)E(8b) of PropositiGh 1 can be reduced to
k_; h; .
—— > and >1—oa; |, for some;.
(r—i —c-i)d Ty — Ci
< \: < J
1 1
1— oo «
» k; k-
00 1 (ri—c)d 00 a; 1 (rei—cy)d

(6)

(7)

Figure 2: The range of parameters (shaded) that ensureisteree of equilibrium in Exampld 2.

Figure[2 illustrates the range of parameters for which (6)i4i) are satisfied. The

x-axis is the fixed order cost per period normalized by prafteptial per period (i.e.,
profit margin times demand). The y-axis is the unit invenkaigling cost normalized

by profit margin. Loosely speaking, for nonexistence fixeléocosts need to be high

relative to inventory holding costs (in both graphs, thed#gtregions are below the

13



265

270

275

280

285

45-degree line). Fixed order costs cannot be too high thqaglindicated by the upper
bound of 1 in horizontal axes), to the point that they canmotdrovered by the profit
potential produced by first-choice demands. Some asymimetineen the firms is also
necessary, and it stems from Conditidnd (%a)-(5b), whicketideviation by scarcity”

strategy possible (as we elaborate above). Again loosedpldpg, one of the firms
(firm —3) is allowed to have a much lower holding cost than the othleis seduces
firm —i to order everything in period 1, but firthdeviates by creating scarcity for all

the reasons explained earlier.
We now provide a set of simple sufficient conditions for thaillorium to exist.

Proposition 2. The multiple-period inventory competition game with fixetko costs
does possess an equilibrium in pure Markov strategies (wisiciot subgame perfect)

if the following conditions are satisfied:

1. d;; are deterministic for alt, ¢; and

2. diy — =P > a5 andd;, — A > 0forall i, t.

T —Cj Ti—Cq

A proof is provided in Appendix C. The equilibrium is constted based on the
inventory replenishment policy that would have been optifoaeach firm: had it
assumed no switchers, as if firmi did not exist (this is reminiscent of [10]). The
main idea is that, given deterministic demands, if any firblindly brings its inven-
tory in each period to the same level as the one prescribed bpt@mal policy for the
single-firm problem, then firmwould meet all of its demand and prevent any demand
switching to firm—i regardless of firm-:'s policy. Thus, both parties blindly mim-
icking an optimal policy for the single-firm problem wouldal® to mutually optimal
responses in two-firm inventory competition. Note that idisa does not extend to

stochastic demands in a straightforward manner.

4. Concluding Remarks

The main insight that our paper offers is a cautionary onettipa-period inven-

tory competition may not have an equilibrium under fixed omrtests. This does not

14
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even require stochastic demands, which suggests that isteree extends to more
general multiple-period settings with fixed order costs.

It is apparent that the presence of fixed order costs fundiaifyenhanges the na-
ture of inventory competition. The biggest open questianfiidture research would
then be: What would absolutely guarantee existence ofibguiin over multiple peri-
ods when fixed costs are significant? Aspects of inventorypsdition that we believe
may contain the answer are: allowing incomplete and iménfidlormation structures,

and restricting the inventory replenishment policies afeirm to a certain class.

Appendix A. Equilibriumin Single-Period Inventory Competition with Fixed Or-
der Costs

Proof of Lemmall.
1. [Upper Semi-Continuity]The only discontinuity iny;(y;, y—; z;) is due to the
fixed order cost-k; I{y; > x;}, which is upper semi-continuousin.

2. [Decreasing Differences]This property can be justified by

(9: (Wi, y—is i) — 9i (i, y—is23)) — (9: (Wi, Y—is ) — 9i (i, i3 33))
= —(ri + h)E[(yi — di(y—-i))* = (5 — di(y-))"
—(yi = di(g-))" + (5 — di(y-4))*] <0
foranyy; > ¢; > 0andy_; > y_; > 0[15, p. 489].
3. [Compact Strategy Spaceffor a fixedy_; > 0, maxy, cjo,0) 9i(¥i, ¥—s) is the
classic newsvendor problem [16, pp. 7-16] that has an op#oiation

Ty — C;

¥; = inf {f >0: F(L(y,i)(g) > m} . (A-l)

Pick some arbitrary constapte (ﬁ, 1), and define

YviU = lnf{§ >0: Fdi+aid—i(§) > P}-

Note thatYV < oo. We first argue by contradiction that’ > y; for all
y—i > 0. Suppos&’V < y;. Then, there must exigt such that’,V < yo < v,

T — C;

i+ hi

Fdi+aid—i(y0) > p, and FJi(y,i)(yO) <

15



The last two inequalities contradict each other, becalise «;d_;

vV
$
—~
<
!
N

forally_; > 0,andp > 7=

a0 Next, we establish the following two implications:

yi > Y = Yi > ¥
> vY = Fpop o(y) > ——2

Yi i di(y—i)\Yi r; + h;
The first one follows fron¥;¥ > ¢;. The second follows from the definition of
vV, and the facts thaky,(, ,(y:) > Fa,+aa_,(yi) forally_; > 0, andp >
T Using these two implications and the prooffof (A.1), it canstown (we
omit further details) thay;, > YV = g;(yi,y—i) < Gi(vi, y—:)- This implies

310 that the following is also truej; € argmay, iy ) 9: (i, y—i) = i € [0, YU
An optimal solution to the general problemex,, ¢, ) 9i (i, Y—i; ¥i) €asily
follows from (AJ). It is eithery; if y; > z; (ordering), orz; otherwise (not

ordering). Therefore, we conclude that:

Yi € argmay cp. o0\ 9i(Uir Yy—is i) = Ui € (i, max(z;, V7).

Proof of Theorerill.

1. [Existence] The properties shown in Lemnid 1 lead to a supermodular game,
which possesses a pure-strategy equilibrium [15, pp. 421-4
a1s 2. [An Equilibrium with Both Firms Ordering]

(@) Inview of [8), an interior equilibriundy?, y3) of T*+* satisfies
yr € BRY(y*,)  foralli.

(b) We havey: € BRY(y*,) for all i. Then, in view of [(§),

—1
(z; < si(y*,;) andz; < y; forall i)

)

(:171- < yr € BR™ (y*,) for all z) :

—1i

16



3. [An Equilibrium with One Firm Ordering]in view of (3), we have

x> si(y";) & a; € BRI (yr,)

—1

(ZC,Z' < S,Z(ZCZ) andz_; < yil S BRQ?(ZCZ))
T
(v-s < w7, € BRZF (@)
4. [An Equilibrium with Neither Firm Ordering]It follows from (4)-(8) that

(z; > si(z—y) foralli) & (z; € BRf’k(:c,i) for all 7).

a0 Appendix B. Nonexistence of Equilibrium in Multiple-Period Inventory Compe-

tition with Fixed Order Costs

Proof of Propositiofl]l. Assume that there exists a subgame-perfect equilibfigmz)
in pure Markov strategies wherg = (11.1,m1,2) andnz = (12,1, 72,2). For alli, let
Yin = 0i1(@i1,Toin), Ti2 = (Yi1 — Ji,l(yfi,l))+n andy; 2 == n;2(xi2, T 2).
It follows from subgame perfection and deterministic dedsathat, for any pair of

nonnegative beginning inventory levéls, », Z2 2) in period 2,

(1,2,72,2) := (m.,2(Z1,2, T2,2), m2,2(Z2,2, F1,2))

must be an equilibrium, i.e.,

Ji,Q(g—i,g), ji’Q < 71‘2(@—1',2) - ryyk_ici
~ .k~ B ) . i 3 ’ »
Yi2 € BR;—E (9—1}2) = {di,z(y7i72),xi72}7 Zio = i,2(y7i,2) _ rik_lci

ji,Qa 571'_2 > CZZ'72((7]7,L-_’2) — %

for all i, wherez := (%12, %22) andk := (k1, k2). At equilibrium (n,72) in period
2, each firm either places no orders or orders up to its seperidd demand regardless
a5 Of the beginning inventory levels.
The proof hinges on six claims stated and proven in the se@&ing 1 andR2 are

proven under the following assumption whose validity imbkshed in Claini 3.

17
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335

340

Assumption 2. Consider a specific firmi € {1,2}. Firm —i using its equilibrium
strategyn_; is not indifferent between ordering and not ordering in peri2, if no

customers switch from firmto firm —: in both periods, i.e.y_;1 # d_;1 +d_;2 —
k_;

T—i—C—; :

If 4,0 = x;2, then by Clain{LL it follows thay;, = di1(y_i1) + di2(y_i2)
(conditional on Assumptidl 2). Else,jf > = d; 2(y—i2) > i, then it follows from
Claim[2 thaty; 1 € {z;1,di1(y—i1)} (again, conditional on Assumptidnh 2). Claiih 3
shows that Assumptidd 2 can be made without loss of gengtthlit it is always valid.

Therefore, collectively, Clainis[I-3 imply for allthat

Yi1 € {xi,h Ji,l(yfi,l)v Ji,l(yfi,l) + dz‘,z(yﬂ',z)}- (B-l)

In words, at equilibriun{r1,72) in period 1, each firm chooses one of three options:
do not order, order up to first-period demand, or order up taudative demand over
two periods. Claimgl4 arid 5 rule out the first twg;; = ;1 andy; 1 = d;1(y—i.1),
respectively, for each firm Claim[8 rules out the only remaining possibility for equi-
librium, (y1,1,¥2.1) = (d1,1 +d1,2,d21 + dz,2). We thus conclude that this two-period

game has no subgame-perfect equilibrium in pure Markotegjies. O

Claim 1. Suppose Assumptibh 2 is valid for fifmAt equilibrium(ny,72), firm¢ does
not order in period 2 only if it orders up to its cumulative tperiod demand in period
1,i.e.,y;2 = x;2 iImpliesy; 1 = Ji,l(yfi,l) + Ji,z(yﬂ',z)-

Proof of Claim[1. To havey; » = z; 2, we must havey, ; > Ji,1(yﬂ',1), since other-
ki

Ti—C4

wise we would haver; » = 0 < d; 2 —

(see Condition12), which would imply

Yi2 > ;2. Therefore,

Jinisn—i) = (ri—ci)di1(y—i1) — ki +ciziq + (6iri — ¢; — hi)zio

—0;(ri + hy)(mi2 — Ji,z(yfm))#

Deﬁnej‘?,ig = (yfi,l — d,i71)+ and

N ks

N deiz, T—i2 <d_j2— ;==

Y—i2 - B B k.
T2, Toi2>d_i2— 7=

18
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k_;

T—i—C—;

Note thatz_; o # d_; 2 — due to Assumptiohl2. Sinag ; > Ji,l(y—i,l), we

havex_; » = £_; 2. Hence, the following implication is true:
Yi2 > di2 = Y—i2 = Y_i2. (B.2)

Let#; = (7,1, 7:,2) be an alternative strategy for firirsuch that

D, —in) = din(y—in)+dia(ji2)

D2 (di2(§-i2), Toi2) = dia(G-i2).
Let (&;2,2_;2) and(¢; 2, §—i,2) denote the inventory levels at the beginning and at

the end of period 2 undéf;, —;), respectively. We have

(Zi2,%—i2) = (di2(J-iz2),T—i2) and (Jiz2,9—i2) = (di2(J-i,2), J—i,2)
wherey_; o = §_; 2 is due to subgame perfection. Therefore,
Ji(hiyn—i) = (ri —ci)di1(y—in) — ki + ciwin + (0iri — ¢i — hy)di2(F_i2)-

FromJ;(n;,n—:) > Ji(f:,m—:) andd;r; — ¢; — h; > 0 (see ConditioI3), we conclude
x;9 > d; 2(j_i2). This together with{BI2) allows us to also conclugde o = §_; ».
In view of this, J;(n;,n—;) > Ji(1;,n—;) now leads tar; » = JZ—VQ(y,i_Q), which in

turnleadstay; 1 = d; 1 (y—i1) + dia(y—i2). 0

Claim 2. Suppose Assumption 2 is valid for fikm At equilibrium (r;,n2), firm 4
orders in period 2 only if it either places no orders in peri@dor orders up to its

first-period demand, i.ey; » > w; o impliesy; 1 € {zi1,d;1(y—i1)}-

Proof of Claini2. To havey; » > z; 2, we must havey; » = d; 2(y—_; 2). This leads to

Jimisn—i) = (ri —c)min(y;1,di1(y—i1)) — (1 = 6;)ci + hi)aiz

—kiI{yiq > xi1} + cizign + 0 (i — ¢i)di 2(y—i2) — Ok

Definez_; 5 := (y_i1 —d—;1)" and

N k.

N deiz, T—i2 <d_j2— ;==
Y—i2 - B B k.

T2, Toi2>d_i2— 7=

19
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k_;

T—i—C—;

Note that? ;o # d_; 2 — due to Assumptionl2. Sineg.s = d; 2 (y_i2), we

haveci,l-_rz(yi_g) = d_; 2. Hence, the following implications are true:
Yi1 = dia = T_j2=1=T_;2 = Y_i2 = Y_i2. (B.3)
Let#; = (7,1, 7:,2) be an alternative strategy for firirsuch that

fi1(zi, 2—in) = di1(y—i1)

7,200, 2) = dia(J-iz2)

Let (24,2, £—;,2) and(g; 2, §—i,2) denote the inventory levels at the beginning and at the

end of period 2 undefrj;, n_;), respectively. We havét; 2, &_;2) = (0,Z_;2) and

(Gi2,§—i2) = (di2(§—i2), J—i2), Wherej_; » = §_; 2 is due to subgame perfection.

Therefore,
Ji(fisn—i) = (ri — ci)dia (y—in) — ki + ciwin + 6i(ri — ¢i)di2(G—i2) — Siks.

We must have,; ; < d;1(y—;.1), since otherwise we would havel —d;)c; +h;)z; 2 >
0 andd;o(y_i2) = di2(j_i2) (see [BB)), which would result idf;(7;,n_;) >
Ji(ni,m—). This implies that

Ji(miym—i) = (ri —ci)yin — kil{yi1 > i1} +civin +6i(ri — ¢i)di2(y—i2) — Siki.
Let us now comparé;(n;, n—;) wWith J; (7, n—;). If ;1 > x; 1, then

Ji(ni,n—i) — Ji(i,n—i - - T
( r)- — C_( ) Yinr — din(y—i1) + 0i(di2(y—iz2) — di2(J-i2))-

We note that

din(y—i2) — diz(j-i2) = o(dos2—y—i2)" —oi(doiz—72)"
< o (Joig —y-i2)”
< (oo —x_i2)
= a;(y_in—din)" — o (Y—in —d-ia(yi1))
< aia—i(di,l - yi,l)Jr
< ojoi(dig (y—in) — yin)

20
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where the second inequality follows frafn; » > x_; 2, the definition ofy_; », and

k_;
d_s2, Toio <d_i2 — =0
. k_q
Y-i2 € {d_io,x_io}, w_jo=d_;j2— Pr———
k—i
T_i2, T2 >doi2 — 7=

Therefore, ify; 1 > z; 1, then

Ji(mﬂ?f;). : ji(ni,nfi) < (g1 — dia(yi2))(1 = Srasar_s).

This implies the desired result, becaudse §;c;a—; > 0. O

kq

Ti—Cq

Claim 3. At equilibrium(ny,72), we must have, 1 # d;1 + d; 2 — for all 1.

Proof of Claim[3. Suppose, for someé y;1 # diq + di2 — ki and Y_il =

Ti—Ci

d_j1+d_i2— ks Claims[1 and2 would then imply for firms thaty_; 1 €

T—i—C—4 -

{zin,din(yin),d—in(yin) + d—ia(yi2)}. Sincer ;1 <y i1 < d_i1+di2
(see Conditiofil2), we must have

Y—i1=d—;1(yin) and y;1 <di1. (B.4)
From (B.4), we havéz; o, x_; 2) = (0,0) and(y; 2, y—i,2) = (d;2,d_;2). Therefore,
Ji(isn—i) = (ri — ci)yin — kil{yin > @1} + cixin + 6;(ri — ¢i)d; 2 — 0ik;.
Let#; = (7:,1,7:,2) be an alternative strategy for firirsuch that

i (Ti1,0—1) = din
fi2(0, (Yy—in —d—in)") = dipo.
Let (Z;2,%—:2) and (g, 2, —s,2) denote the inventory levels at the beginning and at
the end of period 2 undé);, n—;), respectively. We have; 2, 2_;2) = (0, (y—i1 —

d_;1)T) andg; » = d; ». Therefore,

Ji(Niyn—i) = (ri — ¢i)dig — ki + cizig + 0i(ri — ¢;)di2 — k.

In view of J; (i, n—;) > Ji(i,n—:) andx; 1 < diq — n_’“_f'cl_ (see Conditio}4), we
must havey; 1 = d; 1 which contradictS(Bl4).
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ki

Ti—Cq

Now supposey; 1 = d;1 + d; 2 — for all . There are three possibilities for

(.%‘.,2, y—z‘,z)-
The case in whicky; 2, y_i 2) = (d; 2,d_; 2): Inthis case, we have

Ji(iyn—i) = (ri—ci)dig — (1= 8;)ci +hi)wi o — ki +ciwi 1 +0;(ri — ¢i)di 2 — 0iks.
Let#; = (7:,1,7:,2) be an alternative strategy for firirsuch that
Ni1(@in, T—i1) = dia
200, (y—i1 —d—i1)T) = dipo.

Let (&2, #—s2) and (g, 2, §—s,2) denote the inventory levels at the beginning and at
the end of period 2 undé);, n_;), respectively. We have; 2, %_;2) = (0, (y—i1 —

d_;1)") andy; » = d; ». Therefore,
Ji(Miyn—i) = (ri — ci)din — ki + cizin + 6 (ri — ¢;)di 2 — 0k,

This leads taJ;(7;, n—i) > Ji(ni,n—i) due to((1 — d;)c; + h;)zi2 > 0 (see Condi-

tion[2). Therefore, this case cannot occur.

The case in whiclly; 2, y—; 2) = (xi2,d—; 2(x;2)) for somei: We have
Ji(iyn—i) = (ri — ¢i)din — ki + iz 1 + (0ri — ¢; — hy) i 0.
Let#; = (7,1, 7:,2) be an alternative strategy for firirsuch that

i (Ti1,0—i1) = dig+dio
fli2(di2, (Y—in —d—i1)") = dio.

Let(&;2,2_;2) and(y; 2, —; 2) denote the inventory levels at the beginning and at the
end of period 2 undefj;, n—;), respectively. We havét; 2, %_;2) = (d; 2, (y—i1 —

d_;1)") andg; » = d; . Therefore,
Ji(ﬁi’nfi) = (Ti - Ci)diJ — ki +cizin+ (517’1 —C; — hz)dlg

This leads toJ; (7;, n—;) > Ji(n:,n—;) duetoz; o < d; 2 and(d;r; — ¢; — h;) > 0 (see

Conditiong 2 anf13). Therefore, this case cannot occurreithe O

Claim 4. At equilibrium(ny,72) we must have, ; # d; 1(y_; 1) for all 4.
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Proof of ClainT4. Claims[1EB imply that atr;, 72) we must have, for all,

Yi1 € {wi1,di1(y—i1) dii(y—i1) +dia(y—i2)}- (B.5)

One consequence of this is that, forall

0, i,1 € 1T, ,CL‘. —i
ra=d i € {mi1 ,1(97 1)} (B.6)
di2(Y—iz2), Yig =dii(y—in) +di2(y—i2)
which in turn implies that
(Yi,2,Y—i2) = (dij2,d—;,2). (B.7)

Suppose thag; 1 = d; 1(y—:.1). Then, using[(BJ5)EBI7), we have
Ji(isn—i) = (ri — ei)din(Y—in) — ki + i1 + 6:((ri — ¢i)di2 — ki).

wo Let#; = (7:,1,7:,2) be an alternative strategy for firirsuch that

D1 (@i, T—i1) = dii(Y—i1) +dig
fi2(dio, (Y—in —d—i)t) = dio.
Let (24,2, £—;2) and(g; 2, §—i,2) denote the inventory levels at the beginning and at the

end of period 2 undefj;, n—;), respectively. We havét; 2, %_;2) = (d; 2, (y—i1 —

d—;1)") andy; » = d; ». Therefore,

Ji(Niyn—i) = (ri —ci)din(y—in) — ki + cixin
+0;(ri — ¢i)di2 —(ci(1 — 0;) + hi)di2
>—8iki

> Ji(ni,m—:)

where the inequality is due to Conditidd (4). Henceyif = d; 1(y—i1), firmi can do
s Strictly better by unilaterally deviating . O

Claim 5. At equilibrium(n1, n2), we must have, 1 # x; 1 for all 4.
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Proof of Clain{®. Suppose thay; 1 = x;,1. Then, using[(BJ)E(BI7), we have
Ji(Mi,n—i) = (ri — ci)xin + ciwin + 6 (1 — ¢i)di2 — ki).

Let#; = (7:,1,7:,2) be an alternative strategy for firirsuch that

i1 (@i, T—in) = dii(y—i1)

200, (y—in —d—;i1)") = d;o.
Let (&;2,2_;2) and(¢; 2, §—i,2) denote the inventory levels at the beginning and at
the end of period 2 undé);, n_;), respectively. We have; 2, %_;2) = (0, (y—i1 —

d_;1)") andg; » = d; . Therefore,

Ji(isn—i) = (1 —ci)dii(y—i1) — ki +cixin + 0:((ri — ci)dio — k)
>(ri—ci)xi
> Ji(ni,n—:)

where the inequality is due to Conditidd (2). Thereforey;if = z; 1, firm i can do

strictly better by unilaterally deviating . O
Claim 6. At equilibrium(m , ’172), we must havegm, y271) 75 (d171 +d1)2, d2)1+d2)2).

Proof of Clain%. Claims[1Eb imply that, at equilibriurty;, 72), we must have

(y1,1,y21) = (dig+di2,dog+dap) (B.8)
(T1,2,92,2) = (di,2,d22) (B.9)
(Y1,2,92.2) = (di2,da2). (B.10)

Consider the specific firm that meets Condition§ (bd)-(5b). Then, usihg [B.8)-
(B.10), we have

Ji(mi,n—i) = (ri—ci)(diji+di2) — (ri+hi)dig—ki+cixi 1 +8:;((ri—ci)di 2 +cid; 2).
Let#); = (1,1, 7:,2) be an alternative strategy for firfrsuch that

ﬁi,l(xi,l, 1771'.,1) = T

M:,2(0,Z—52) = di2(Z—i2)
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wherez_; 5 :=d_; 2 — a_;(d; 1 — x;1). Note that, due to Conditiofi(ba), we have

k_;

T—52 > d,i_g -
T—; —C—4

Let(&;2,2_;2) and(y; 2, —; 2) denote the inventory levels at the beginning and at the
end of period 2 undefr);, n_;), respectively. We havé?; »,%_;2) = (0,Z_;2) and

(Yi,2,J—i,2) = (di2(Z_42),242), Wherej_; » = &_; » is due to subgame perfection.

Therefore,
Ji(i,n—i) = (ri—ci)rin + ciwin
+0;((ri — ¢i)(di2 + ao_i(dig — x4,1))) — 0ik;
> Ji(misn—i)
where the inequality is due to Conditidn {5b). O

Appendix C. Existenceof Equilibrium in Multiple-Period I nventory Competition

Proof of Propositiofi 2. Consider the single-firm inventory control problem in which
firm ¢ makes inventory decisions to meet its own first-choice detsdp;, ..., d; r
assuming that firm-7 and its first-choice demands,; 1, ..., d_; r do not exists. Let
wi = (Wi1,--.,u;,r) be an optimal policy for firmi, which is known to exist. Let
(wi1,yi,e) be firmé’s inventory levels at the beginning and at the end of petjaen-

erated recursively by

Yix = Mz‘,t(ffi,t) (C.1)
Tity1 = (Yie—dig)". (C.2)

We first argue that firm meets its demand in all periods, i.¢;, > d;+ for all t. To
see this, assume that we haye < d, ; in periodt € {1,..., T} for the first time. It
must be that > 2 andy, ; = =, ; > d; ; — Tvk_icv > 0; otherwise, firm; could strictly

improve its total profit by ordering up @, ; in periodt. Letf € {1,...,t — 1} be the

last period (before periot) in which firmi places an order, i.ey; ; > x; ;. We must

havey, ; = d;; +--- +d; ;1 +z;; andz, ; < d, ;; otherwise, firm; can reduce its
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holding cost by delaying its ordering decision to a lateliguein which the inventory
carried from the previous period is not sufficient to meetdamand in that period.

Let u* be a policy for firmi such that

p(ie) = yie,  fort=1,...,1—1
“;‘?E(Iz,t) = diptFdig
PO+t dg ) = it tdg oy,  fort=f+1,...,i—1
pis(0) = 0
pl (i) = v,  fort=i+1,...,T.

Let J:(u;) andJ;(uf') denote the total profits corresponding to the poligieand.#,

respectively. Sincg;! is not an optimal policy, we have
- A 1
Ti(ps) = J(ut) = | mib " —as T =h Y 6 | #>0

which leads t0~i6f*1 — ciéf” —h; Zt 1671 > 0. LetuP be another policy for firm

t=t i
i such that
pl (i) = i, fort=1,...,1—1
pi(a ) = dig+e+dig
pi(dig + -+ dig) = dig+--+dg, fort=t+1,...,%
ply(@ie) = wyie, fort=i+1,...7T.

Let J;(uP) denote the total profit corresponding to the policy. We have
} X -1
Ji(pl) = Ji(u) = | rid; = bl = h Y 05| (g —d,p) >0
t=t
which contradicts the optimality gf;. Thereforey, ; > d, , for all ¢.
Now, consider the two-firm multiple-period inventory cortifen model. For all
1€ {1, 2}, let 1, = (7’]1‘71, A ,’I]Z',T) be such thaiyi7t(:ii,t, j—i,t) = max{ji,t, yiﬂg} for
alltand allz; +,%_;+ > 0, wherey, ; is generated by (C.1)-(G.2). It follows that if

firm i usesy;, then firmé’s inventory decision at the end of any periogill be y; , and
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no demand will switch from firm to firm —i regardless of the strategy used by firm
—i. As aresult, if firmi usesn;, firm —: cannot possibly improve its total profit (in a

strict sense) by unilaterally switching from ; to an alternative strategy. O
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