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Abstract

We show that fixed order costs fundamentally change whether there exists an equi-

librium in inventory competition: The single-period game always has an equilibrium,

but the multiple-period game may not. On the latter point we offer a family of problem

instances with two periods and deterministic demands – the simplest possible multiple-

period setup – that lack equilibrium. The most intriguing dynamic that contributes to

nonexistence of equilibrium is that a firm can improve its future sales by deliberately

creating scarcity.
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1. Introduction

Inventory competition has been a topic of great interest in operations management.

The retailer maxim “stock it and they will come” embodies thebasic story. Two retail-

ers carrying the same product at the same price would competeon service, for which

product availability is arguably the most important dimension. More broadly, retail-5

ers enter into competition with one another by stocking products that are substitutes

of each other. Study of equilibrium between retailers’ inventory decisions for substi-

tutable products is what concerns the inventory competition literature.

To the best of our knowledge, fixed order cost has never been considered in this

literature, even though it has a prominent place in inventory theory [1]. Inventory com-10
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petition has been studied in single-period settings [2, 3, 4, 5] as well as multiple-period

settings [6, 7, 8, 9, 10]; with two firms [2, 3, 6, 8, 9, 10] orn firms [4, 7, 5, 9]; under

deterministic substitution with lost sales [2, 6, 5, 9, 10] or various forms of backlogging

[8] and more sophisticated market dynamics [11]; and under probabilistic substitution

that allows for rich micromodels of consumer response to stockouts [3, 4]. Also rele-15

vant are monopolistic models of inventory management for substitutable products, e.g.,

[12, 13, 14]. For a more comprehensive review of the inventory competition literature,

the reader is referred to [9, 8, 11].

In this paper, we consider two substitutable products, eachcarried by a separate

firm that can replenish its inventory only at a positive fixed order cost. Each product20

attracts demand from two sources: customers who prefer to shop at the firm that car-

ries it, and customers who ordinarily prefer to shop at the other firm but need to switch

loyalties due to shortage of inventory there. This substitution behavior, modeled by

a fixed percentage of a firm’s excess demand switching to its competitor (a standard

abstraction commonly employed in the literature, e.g., [2,6, 5]), creates a strategic in-25

teraction between the firms’ inventory replenishment decisions. We study the existence

and nature of equilibrium in single- and multiple-period games resulting from this in-

teraction. Our main point of departure from the literature is to allow a non-negligible

fixed order cost for each firm.

We consider only pure Markov strategies. Although mixed andbehavior strategies30

are commonly used in broad game theory literature, it is hardto imagine that a firm

would use randomization to decide on inventory levels; hence we presume that firms in

inventory competition use pure strategies only. Markov strategies are also quite natural

in our context, because beginning inventory levels almost completely summarize the

history of the game. In fact, an equilibrium that cannot be implemented in Markov35

strategies would be quite awkward in that it would result in different inventory deci-

sions for the same state, which may have been reached via different histories.

The contribution of our paper is two-fold. We first characterize the set of single-

period pure-strategy equilibria as a function of the firms’ initial inventory levels and

fixed order costs. In particular, we observe that a pure-strategy equilibrium always ex-40

ists, and for some initial inventory levels multiple pure-strategy equilibria may exist.
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We also relate these pure-strategy equilibria to the pure-strategy equilibria in zero-

initial-inventory, zero-fixed-order-cost case (tying ourresults to the extant literature),

and give necessary and sufficient conditions for when both firms, one firm, and nei-

ther firm order. We then explore the two-period game with deterministic demands,45

and establish sufficient conditions for nonexistence of subgame-perfect equilibrium in

pure Markov strategies. The nonexistence of equilibrium even in the simplest possible

multiple-period setup suggests that it extends to more general models with multiple pe-

riods and fixed order costs. It is interesting that demand uncertainty is not essential for

nonexistence to occur, whereas fixed order costs and multiple periods are. In addition50

we offer a simple sufficient condition for existence of equilibrium in the two-period

game with deterministic demands. Therefore, to the extent that fixed order costs are

a significant driver of inventory decisions, the multiple-period inventory competition

problem must be reexamined in light of our results.

We use the following notation throughout the paper:−i denotes indices other than55

i; I{·} is the indicator function that equals1 if the condition within brackets is true, and

0 otherwise;FX (fX ) denotes the cumulative distribution function (density function) of

a random variableX ; E[·] denotes the expectation operator;A ⇒ B means “A implies

B”; A ⇔ B means “A andB are equivalent statements”;:= states a definition; and

(x)+ := max(0, x) for a real numberx.60

2. Models

In this section we introduce our models of single- and multiple-period inventory

competition with fixed order costs. Both models involve two firms and a single product

that they each carry. It is best to think of these two productsas substitutes. They

may or may not be differentiated, but some customers substitute one for the other. A65

natural special case of our models is applicable to two retailers carrying exactly the

same product. For brevity, our models speak of a single product as in this special case,

even though they apply to any two substitutable products each sold by a separate firm.
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2.1. A Single-Period Inventory Competition Model with Fixed Order Costs

Consider firmi ∈ {1, 2} with a given initial inventory levelxi ≥ 0. Both firms70

simultaneously act on whether or not to place an inventory replenishment order, and

how large an order to place. Orders are fulfilled at zero leadtime regardless of their

size. As a result, firmi takes its inventory level fromxi to yi (yi ≥ xi), incurring a

total cost ofci(yi − xi) + kiI{yi > xi}, whereci ≥ 0 is the variable order cost per

unit, andki ≥ 0 is the fixed order cost.75

Then, firmi receives demanddi from the customers for whom firmi is the first

choice. We assume that(d1, d2) are exogenous random variables with nonnegative

support (they can be correlated). If the first-choice demanddi cannot be fully satisfied

by firm i, i.e.,di > yi, then a fixed proportionα−i ∈ [0, 1] of excess demand(di−yi)
+

switches to firm−i. (The remainder of the first-choice demand is lost for both firms.)

Therefore, the total demand faced by firmi is

d̄i(y−i) := di + αi(d−i − y−i)
+. (1)

(We suppress the dependence ofd̄i on y−i when there is no possibility of confusion.)

After demand realizations, including the switching behavior, firm i collects a total rev-

enue ofrimin(yi, d̄i) and incurs inventory holding costhi(yi − d̄i)
+, whereri ≥ 0

is the revenue per unit sales, andhi ≥ 0 is the holding cost per unit of inventory. The

resulting expected profit for firmi is

gi(yi, y−i;xi) := E
[
ri min(yi, d̄i)− hi(yi − d̄i)

+ − ci(yi − xi)− kiI{yi > xi}
]
,

where the expectation is taken with respect to(d1, d2). We rewrite firmi’s expected

profit as

gi(yi, y−i;xi) = ḡi(yi, y−i)− kiI{yi > xi}+ cixi, (2)

where

ḡi(yi, y−i) = E
[
rimin(yi, d̄i)− hi(yi − d̄i)

+ − ciyi
]

= (ri − ci)yi − (ri + hi)E
[
(yi − d̄i)

+
]
.
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We denote the noncooperative game with payoffsgi(yi, y−i;xi) and strategy sets

{[xi,∞)}i∈{1,2} with Γx,k, where the dependence on initial inventory levelsx :=80

(x1, x2) and fixed order costsk := (k1, k2) is made explicit. Our model is standard

in the inventory competition literature, except the fixed order cost part. We show that

fixed order costs cause some fundamental changes in the nature of strategic interaction

between firms competing on inventory.

2.2. A Multiple-Period Inventory Competition Model with Fixed Order Costs85

Now consider the same game unfolding over multiple periods.Firm i has an ini-

tial inventory levelxi,1 ≥ 0. In each periodt ∈ {1, . . . , T } four events happen in

the following sequence. At the beginning of periodt firm i brings its inventory level

from xi,t up to yi,t ≥ xi,t. Firm i then receives the first-choice demanddi,t, where

(d1,t, d2,t) for t = 1, . . . , T form an independently (but not necessarily identically)90

distributed exogenous random sequence. Inventory shortages, if any, cause a switching

behavior that yields an effective demand ofd̄i,t(y−i,t) = di,t + αi(d−i,t − y−i,t)
+

for firm i. Finally, firm i receives its period-t profit whose expected value, denoted

by gi,t
(
yi,t, y−i,t;xi,t

)
, equalsgi

(
yi,t, y−i,t;xi,t

)
using (2) with the expectation taken

with respect to(d1,t, d2,t).95

In sum, every period firms make simultaneous inventory replenishment decisions to

meet demands that reflect the customers’ switching behavior. Firm i’s inventory level

evolves over time according to the equationxi,t+1 =
(
yi,t − d̄i,t(y−i,t)

)+
. As in the

single-period model, the unmet demand after switching is lost.

We wish to study the equilibria of the ensuing dynamic noncooperative game with

each firmi making its order-up-to decisions according toyi,t = ηi,t(xi,t, x−i,t), where

ηi := (ηi,1, . . . , ηi,T ) is the pure Markov strategy employed by firmi satisfying

ηi,t(xi,t, x−i,t) ≥ xi,t, for all t ∈ {1, . . . , T }. (3)

Under a strategy profile(ηi, η−i), firm i’s total expected profit is given as

Ji(ηi, η−i) = E

[
T∑

t=1

δt−1
i gi,t(yi,t, y−i,t;xi,t)

]

5



whereyi,t = ηi,t(xi,t, x−i,t), xi,t+1 =
(
yi,t − d̄i,t

)+
, andδi ∈ [0, 1] is firm i’s dis-100

count factor.

A strategy profile(η∗1 , η
∗
2) is called an equilibrium if

Ji(η
∗
i , η

∗
−i) = max

ηi

Ji(ηi, η
∗
−i)

for all i, where the maximization is subject to (3). We are interestedin a refinement

called subgame perfection. An equilibrium strategy profile(η∗1 , η
∗
2) is called subgame

perfect if, for anỹt ∈ {1, . . . , T }, the truncated strategy profile

(
(η∗1,t̃, . . . , η

∗
1,T ), (η

∗
2,t̃, . . . , η

∗
2,T )

)

is an equilibrium of all subgames starting in periodt̃ with anynonnegative inventory

levels(x̃1,t̃, x̃2,t̃) and unfolding over the periods{t̃, . . . , T }. Note that subgame per-

fection requires equilibrium behavior in any subgame starting with any nonnegative

inventory levels(x̃1,t̃, x̃2,t̃) regardless of whether or not(x̃1,t̃, x̃2,t̃) can be reached in105

the original game under(η∗1 , η
∗
2). Henceforth, we use the term “equilibrium” to mean

“equilibrium in pure strategies” in the single-period caseand “subgame-perfect equi-

librium in pure Markov strategies” in the multiple-period case (sometimes referred in

the literature as pure-strategy Markov Perfect Equilibrium), except when we use the

longer forms for emphasis.110

We impose the following assumption throughout the paper to avoid trivial cases.

Assumption 1. For i ∈ {1, 2}, (a)xi,1, ci, hi, ki ≥ 0 andαi, δi ∈ [0, 1]; (b) ri > ci;

(c) ci + hi > 0; (d) δiαiα−i < 1; (e) di,t have nonnegative support and finite mean

for all t.

Part (a) of Assumption 1 ensures sensible parameter values.If part (b) does not hold,115

i.e.,ri ≤ ci, then placing no orders would be optimal for firmi regardless of the actions

taken by firm−i, which renders the entire game trivial. If part (c) fails to hold, i.e.,

ci = hi = 0, then ordering an unbounded amount could be optimal for firmi, in which

case there would be no inventory competition as customers would have no reason to

switch between firms. Part (d) is a technical assumption madefor expositional clarity;120

our results can be extended to the case withδi = αi = α−i = 1. Part (e) rules out the

possibility of observing negative demand or unbounded optimal order quantity.

6



3. Equilibrium in Inventory Competition with Fixed Order Costs

We now present our analyses of existence and nature of equilibrium in single- and

multiple-period inventory competition with fixed order costs.125

3.1. Single-Period Analysis

First, we use the supermodular games framework to establishthe existence of equi-

librium in the single-period game (§2.1). We then characterize the equilibrium. In par-

ticular, we relate the equilibria of the general model with any set of initial inventories

and fixed order costs to the equilibria in zero-initial-inventory, zero-fixed-order-cost130

case. We also give necessary and sufficient conditions for when equilibria with both

firms, one firm, and neither firm placing orders occur. (The proofs are in Appendix A.)

We first define the best response correspondence for firmi taking part in the game

Γx,k as follows:

BR
x,k
i (y−i) := argmaxyi∈[xi,∞) {ḡi(yi, y−i)− kiI{yi > xi}+ cixi}

where the dependence on initial inventoriesx = (x1, x2) and fixed costsk = (k1, k2)

is made explicit. Note thatBR
0,0
i (y−i) = argmaxyi∈[0,∞)ḡi(yi, y−i).

Firm i has two options: place an order, in which case firmi cannot gain an expected

profit any higher than{maxyi≥0 ḡi(yi, y−i)− ki + cixi}; place no orders and gain

{ḡi(xi, y−i) + cixi}. Therefore, as commonly observed in inventory replenishment

problems with fixed order cost, firmi will want to place an order only if its inventory

is above a threshold. We define that threshold as follows:

si(y−i) := max

{

zi ≤ minBR
0,0
i (y−i) : ḡi(zi, y−i) ≤ max

yi≥0
ḡi(yi, y−i)− ki

}

.

(4)

The constraintzi ≤ minBR
0,0
i (y−i) is needed for there may exist multiple optima for

the subproblemmaxyi≥0 ḡi(yi, y−i). Firm i must then use the best response

BR
x,k
i (y−i) =







BR
0,0
i (y−i), if xi < si(y−i)

{
xi

}
∪BR

0,0
i (y−i), if xi = si(y−i)

xi, if xi > si(y−i)

(5)
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Clearly, a profiley∗ := (y∗1 , y
∗
2) of inventory replenishment decisions is an equi-135

librium of Γx,k if and only if y∗i ∈ BR
x,k
i (y∗−i) for all i. We call(y∗1 , y

∗
2) an interior

equilibrium ofΓx,k when both firms place orders in equilibrium, i.e.,y∗i > xi and

y∗i ∈ BR
x,k
i (y∗−i) for all i.

Next, we observe that the expected profit of each firm obeys certain properties.

Lemma 1. Consider any gameΓx,k arising from the single-period inventory competi-140

tion model with fixed order costs. The expected profitgi(yi, y−i;xi) for eachi ∈ {1, 2}

possesses the following properties.

1. gi(yi, y−i;xi) is upper semi-continuous inyi.

2. For anyyi ≥ ȳi ≥ 0, gi(yi, y−i;xi)− gi(ȳi, y−i;xi) is nonincreasing iny−i.

3. Given an arbitrary constantρ ∈ ( ri−ci
ri+hi

, 1), there exists a finite boundY U
i :=

inf{ξ ≥ 0 : Fdi+αid−i
(ξ) ≥ ρ} such that, for allxi, y−i ≥ 0,

ȳi ∈ argmaxyi∈[xi,∞)gi(yi, y−i;xi) ⇒ ȳi ∈ [xi,max(xi, Y
U
i )].

We are now ready to state our main result regarding the existence and nature of145

equilibrium in single-period inventory competition with fixed order costs. Lemma 1

implies thatΓx,k is a supermodular game, where each firm’s strategy belongs toa

compact interval and each firm’s expected profit is upper semi-continuous with respect

to its own order-up-to level. It is well-known that such games have equilibria [15]. We

state this and show several characteristics of the equilibria.150

Theorem 1. Consider any gameΓx,k arising from the single-period inventory compe-

tition model with fixed order costs.

1. [Existence] Γx,k has a nonempty equilibrium set.

2. [An Equilibrium with Both Firms Ordering]

(a) An interior equilibrium ofΓx,k, if it exists, is an equilibrium ofΓ0,0.155

(b) Let y∗ be an equilibrium ofΓ0,0. Then,y∗ is an interior equilibrium of

Γx,k if and only ifxi ≤ si
(
y∗−i

)
andxi < y∗i for all i.

3. [An Equilibrium with One Firm Ordering] For any firmi, y∗ =
(
xi, y

∗
−i

)
6= x

is an equilibrium ofΓx,k if and only if xi ≥ si
(
y∗−i

)
, x−i ≤ s−i(xi), and

x−i < y∗−i ∈ BR
0,0
−i (xi).160
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4. [An Equilibrium with Neither Firm Ordering] y∗ = x is an equilibrium of

Γx,k if and only ifxi ≥ si
(
x−i

)
for all i.

For an interior equilibrium with both firms placing orders tooccur, their initial in-

ventories must be below their order thresholds. If both initial inventories exceed the

threshold, then neither firm orders in equilibrium. The remaining two (hybrid) situa-165

tions result in an asymmetric equilibrium with only one of the firms placing an order -

the one with below-threshold initial inventory. Example 1 illustrates these equilibria in

the space of initial inventory levels.

Example 1. Consider a problem instance with parametersk1 = k2 = 0.2, α1 =

α2 = 0.5, h1 = h2 = c1 = c2 = 1, r1 = r2 = 3, and exponential first-choice170

demands with mean1, i.e.,d1 andd2 are independent and identically distributed with

densitye−ξI{ξ ≥ 0}. In this case,BR
0,0
1 andBR

0,0
2 are single valued. Moreover,

y0,0 is a singleton, the unique point at whichBR
0,0
1 andBR

0,0
2 intersect. The top

graph in Figure 1 shows two regions, one representing the setof x for which y0,0 is

an equilibrium, and the other the set ofx for whichx is an equilibrium, i.e., neither175

firm orders. The middle graph shows the region for which
(
x1, BR

0,0
2 (x1)

)
6= x is an

equilibrium, i.e., firm1 does not order but firm2 orders up to levelBR
0,0
2 (x1) > x2.

The bottom graph shows the reverse possibility in which onlyfirm 1 orders, up to level

BR
0,0
1 (x2) > x1. Note that these regions overlap; for certainx, there exist multiple

equilibria (up to three) that belong to
{

y0,0,
(
x1, BR

0,0
2 (x1)

)
,
(
BR

0,0
1 (x2), x2

)}

.180

3.2. Multiple-Period Analysis

In this subsection, we show that no equilibrium may exist in the multiple-period

game with fixed order costs (§2.2). To this end we choose the simplest possible setup:

two periods and deterministic demands. The nonexistence result hinges on a series

of conditions that create conflicting incentives on when to order. Its building blocks185

(Claims 1-6) and a formal proof that puts them all together ispresented in Appendix

B. Here we first state the result and then give an intuitive account of why it is true.
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Figure 1: The equilibrium set as a function ofx in Example 1.

Proposition 1. The two-period inventory competition game with fixed order costs does

not have a subgame-perfect equilibrium in pure Markov strategies if the following con-

ditions are satisfied:190

1. di,t are deterministic for alli, t;

2. di,1 − ki

ri−ci
> xi,1 anddi,2 −

ki

ri−ci
> 0 for all i;

3. δiri > ci + hi for all i;

4. (ci + hi)di,2 < δi(ki + cidi,2) for all i;

5. For somei195

10



(a) α−i(di,1 − xi,1) <
k
−i

r
−i−c

−i
, and

(b) (ci(1− δi) + hi)di,2 + (1− δi)ki > (ri − ci)(1− δiαiα−i)(di,1 − xi,1).

In words, the five conditions, which define a family of probleminstances, say that:

1. Demands are deterministic;

2. In both periods, satisfying first-choice demand is enoughto cover the fixed order200

cost;

3. Saving first-period inventory for the second period is worth the cost;

4. If already placing an order, it is less costly to order somemore in period 1 to meet

second-period demand, than to place another order in period2 at the expense of

a fixed order cost;205

5. For at least one of the firms, if it were to place no orders in period 1, then (a)

profit potential from switchers to the other firm is not enoughto cover fixed

order cost for the other firm in period 2, and (b) inventory holding cost savings

that come from not having to carry inventory from period 1 to period 2 outweigh

the profits lost in period 1.210

The proof of Proposition 1 advances a sequence of five major arguments regarding

an equilibrium of the two-period game – should one exist – will need to contend with:

• In period 2, firms either do not order, or order up to their second-period demand

regardless of their inventory levels at the beginning of period 2. This is simply

due to subgame perfection .215

• In period 1, firms choose one of three options: (a) order up to total two-period

demand, (b) order up to period 1 demand, or (c) do not order, i.e.,

yi,1 ∈ {d̄i,1(y−i,1) + d̄i,2(y−i,2), d̄i,1(y−i,1), xi,1}.

Although intuitively appealing due to piecewise linearityof expected profits in

each period, this is by no means obvious, because a firm’s decision in period 1

has some bearing on the total demand that it faces in period 2.In fact, we use

Conditions (1)-(3) to prove it.
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• Firm i cannot take option (b) in equilibrium, because by Condition(4) it would220

rather place a bigger order in period 1 to cover for second-period demand as well.

• Option (c) cannot occur in equilibrium either, because Condition (2) creates

enough incentive for each firm to order in period 1.

• The only remaining candidate for equilibrium, both firms taking option (a), can

also be ruled out. By Condition (5) at least one of the firms hasan incentive to225

deviate from this strategy.

The most interesting dynamic that contributes to nonexistence occurs when both

firms attempt to order their total two-period demand in period 1 (the last item above).

This strategy is not an equilibrium, because at least one of the firms can profitably

deviate from it by creating a deliberate scarcity – by not ordering at all in period 1.230

The reason is subtle. Suppose firmi deviates. By placing no orders in period 1, firmi

would give up some of its demand and lose profits. However, itcan fully recover this

loss in period 2. Some of the demand unmet by firmi in period 1 would switch to firm

−i. As a result, firm−i would have less inventory, namely[d−i,2 − α−i(di,1 − xi,1)]

as opposed tod−i,2, at the beginning of period 2. This would result in firm−i failing235

to fully meet its demand in period 2, as it would not want to place another order in

period 2 by Condition (5a). Hence, some of the demand unmet byfirm −i in period

2, namelyαiα−i(di,1 − xi,1), would switch to firmi. Also to firm i’s advantage,

it would avoid the cost of holding inventory for meeting second-period demanddi,2.

Condition (5b) ensures that inventory holding cost savingsoutweigh the profits given240

up. In sum, the deviating firm (firmi) is able to generate a strategic advantage out of

scarcity that it deliberately introduces in period 1. The unfortunate byproduct of this

strategic behavior is that both firms ordering their total two-period demand in period 1

cannot be an equilibrium.

A few final observations about the robustness of Proposition1 is in order. First, the245

family of problem instances for which nonexistence of equilibrium is assured is quite

large. To illustrate this, we offer a special case of the two-period model as an exam-

ple, and graph the regions of parameter values that guarantee nonexistence (Figure 2).

The result is robust to parameter perturbations, includingdeterministic perturbations
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to demands. Furthermore, the nonexistence can also be formally established forǫ-250

equilibrium (the details are available from the authors). Theǫ-equilibrium is a simple

extension of Nash that requires no player gaining more thanǫ by unilaterally deviating

from the Nash strategy. Hence, the nonexistence ofǫ-equilibrium is a further indication

that Proposition 1 is a robust result. It in fact suggests that a close cousin of Proposition

1 may hold true under stochastic perturbations in demand.255

Example 2. Consider the case with no initial inventories,xi,1 = 0, no discounting for

period 2,δi = 1, and constant demand,di,t = d, for all i, t and for some constant

d > 0. Conditions (2)-(4) of Proposition 1 can then be reduced to

1 >
ki

(ri − ci)d
>

hi

ri − ci
, for all i (6)

and Conditions (5a)-(5b) of Proposition 1 can be reduced to

(
k−i

(r−i − c−i)d
> α−i and

hi

ri − ci
> 1− αiα−i

)

, for somei. (7)

0 1
0

1

ki

(ri − ci)d

h
i

r
i
−

c
i

1 − αiα−i ×

0 1
0

1

k
−i

(r
−i − c

−i)d

h
−

i

r
−

i
−

c
−

i

α
−i

Figure 2: The range of parameters (shaded) that ensure nonexistence of equilibrium in Example 2.

Figure 2 illustrates the range of parameters for which (6) and (7) are satisfied. The

x-axis is the fixed order cost per period normalized by profit potential per period (i.e.,

profit margin times demand). The y-axis is the unit inventoryholding cost normalized

by profit margin. Loosely speaking, for nonexistence fixed order costs need to be high

relative to inventory holding costs (in both graphs, the shaded regions are below the260
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45-degree line). Fixed order costs cannot be too high though(as indicated by the upper

bound of 1 in horizontal axes), to the point that they cannot be recovered by the profit

potential produced by first-choice demands. Some asymmetrybetween the firms is also

necessary, and it stems from Conditions (5a)-(5b), which make “deviation by scarcity”

strategy possible (as we elaborate above). Again loosely speaking, one of the firms265

(firm −i) is allowed to have a much lower holding cost than the other; this seduces

firm −i to order everything in period 1, but firmi deviates by creating scarcity for all

the reasons explained earlier.

We now provide a set of simple sufficient conditions for the equilibrium to exist.

Proposition 2. The multiple-period inventory competition game with fixed order costs270

does possess an equilibrium in pure Markov strategies (which is not subgame perfect)

if the following conditions are satisfied:

1. di,t are deterministic for alli, t; and

2. di,1 − ki

ri−ci
> xi,1 anddi,t −

ki

ri−ci
> 0 for all i, t.

A proof is provided in Appendix C. The equilibrium is constructed based on the275

inventory replenishment policy that would have been optimal for each firmi had it

assumed no switchers, as if firm−i did not exist (this is reminiscent of [10]). The

main idea is that, given deterministic demands, if any firmi blindly brings its inven-

tory in each period to the same level as the one prescribed by an optimal policy for the

single-firm problem, then firmi would meet all of its demand and prevent any demand280

switching to firm−i regardless of firm−i’s policy. Thus, both parties blindly mim-

icking an optimal policy for the single-firm problem would lead to mutually optimal

responses in two-firm inventory competition. Note that thisidea does not extend to

stochastic demands in a straightforward manner.

4. Concluding Remarks285

The main insight that our paper offers is a cautionary one: Multiple-period inven-

tory competition may not have an equilibrium under fixed order costs. This does not
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even require stochastic demands, which suggests that nonexistence extends to more

general multiple-period settings with fixed order costs.

It is apparent that the presence of fixed order costs fundamentally changes the na-290

ture of inventory competition. The biggest open question for future research would

then be: What would absolutely guarantee existence of equilibrium over multiple peri-

ods when fixed costs are significant? Aspects of inventory competition that we believe

may contain the answer are: allowing incomplete and imperfect information structures,

and restricting the inventory replenishment policies of each firm to a certain class.295

Appendix A. Equilibrium in Single-Period Inventory Competition with Fixed Or-

der Costs

Proof of Lemma 1.

1. [Upper Semi-Continuity]The only discontinuity ingi(yi, y−i;xi) is due to the

fixed order cost−kiI{yi > xi}, which is upper semi-continuous inyi.300

2. [Decreasing Differences]This property can be justified by

(
gi(yi, y−i;xi)− gi(ȳi, y−i;xi)

)
−
(
gi(yi, ȳ−i;xi)− gi(ȳi, ȳ−i;xi)

)

= −(ri + hi)E
[
(yi − d̄i(y−i))

+ − (ȳi − d̄i(y−i))
+

−(yi − d̄i(ȳ−i))
+ + (ȳi − d̄i(ȳ−i))

+
]
≤ 0

for anyyi ≥ ȳi ≥ 0 andy−i ≥ ȳ−i ≥ 0 [15, p. 489].

3. [Compact Strategy Space]For a fixedy−i ≥ 0, maxyi∈[0,∞) ḡi(yi, y−i) is the

classic newsvendor problem [16, pp. 7-16] that has an optimal solution

y̆i = inf

{

ξ ≥ 0 : Fd̄i(y−i)(ξ) ≥
ri − ci

ri + hi

}

. (A.1)

Pick some arbitrary constantρ ∈
(

ri−ci
ri+hi

, 1
)

, and define

Y U
i := inf{ξ ≥ 0 : Fdi+αid−i

(ξ) ≥ ρ}.

Note thatY U
i < ∞. We first argue by contradiction thatY U

i ≥ y̆i for all

y−i ≥ 0. SupposeY U
i < y̆i. Then, there must existy0 such thatY U

i < y0 < y̆i,

Fdi+αid−i
(y0) ≥ ρ, and Fd̄i(y−i)(y0) <

ri − ci

ri + hi

.
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The last two inequalities contradict each other, becausedi + αid−i ≥ d̄i(y−i)

for all y−i ≥ 0, andρ > ri−ci
ri+hi

.

Next, we establish the following two implications:305

yi > Y U
i ⇒ yi > y̆i

yi > Y U
i ⇒ Fd̄i(y−i)(yi) >

ri − ci

ri + hi

The first one follows fromY U
i ≥ y̆i. The second follows from the definition of

Y U
i , and the facts thatFd̄i(y−i)(yi) ≥ Fdi+αid−i

(yi) for all y−i ≥ 0, andρ >

ri−ci
ri+hi

. Using these two implications and the proof of (A.1), it can be shown (we

omit further details) thatyi > Y U
i ⇒ ḡi(yi, y−i) < ḡi(y̆i, y−i). This implies

that the following is also true:̃yi ∈ argmaxyi[0,∞)ḡi(yi, y−i) ⇒ ỹi ∈ [0, Y U
i ].310

An optimal solution to the general problemmaxyi∈[xi,∞) gi(yi, y−i;xi) easily

follows from (A.1). It is eithery̆i if y̆i > xi (ordering), orxi otherwise (not

ordering). Therefore, we conclude that:

ȳi ∈ argmaxyi∈[xi,∞)gi(yi, y−i;xi) ⇒ ȳi ∈ [xi,max(xi, Y
U
i )].

�

Proof of Theorem 1.

1. [Existence] The properties shown in Lemma 1 lead to a supermodular game,

which possesses a pure-strategy equilibrium [15, pp. 491-492].

2. [An Equilibrium with Both Firms Ordering]315

(a) In view of (5), an interior equilibrium(y∗1 , y
∗
2) of Γx,k satisfies

y∗i ∈ BR
0,0
i (y∗−i) for all i.

(b) We havey∗i ∈ BR
0,0
i (y∗−i) for all i. Then, in view of (5),

(
xi ≤ si(y

∗
−i) andxi < y∗i for all i

)

m
(

xi < y∗i ∈ BR
x,k
i (y∗−i) for all i

)

.
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3. [An Equilibrium with One Firm Ordering]In view of (5), we have

xi ≥ si(y
∗
−i) ⇔ xi ∈ BR

x,k
i (y∗−i)

(

x−i ≤ s−i(xi) andx−i < y∗−i ∈ BR
0,0
−i (xi)

)

m
(

x−i < y∗−i ∈ BR
x,k
−i (xi)

)

.

4. [An Equilibrium with Neither Firm Ordering]It follows from (4)-(5) that

(
xi ≥ si(x−i) for all i

)
⇔

(
xi ∈ BR

x,k
i (x−i) for all i

)
.

�

Appendix B. Nonexistence of Equilibrium in Multiple-Period Inventory Compe-320

tition with Fixed Order Costs

Proof of Proposition 1.Assume that there exists a subgame-perfect equilibrium(η1, η2)

in pure Markov strategies whereη1 = (η1,1, η1,2) andη2 = (η2,1, η2,2). For all i, let

yi,1 := ηi,1(xi,1, x−i,1), xi,2 := (yi,1 − d̄i,1(y−i,1))
+, andyi,2 := ηi,2(xi,2, x−i,2).

It follows from subgame perfection and deterministic demands that, for any pair of

nonnegative beginning inventory levels(x̃1,2, x̃2,2) in period 2,

(ỹ1,2, ỹ2,2) :=
(
η1,2(x̃1,2, x̃2,2), η2,2(x̃2,2, x̃1,2)

)

must be an equilibrium, i.e.,

ỹi,2 ∈ BR
x̃,k
i (ỹ−i,2) =







d̄i,2(ỹ−i,2), x̃i,2 < d̄i,2(ỹ−i,2)−
ki

ri−ci
{
d̄i,2(ỹ−i,2), x̃i,2

}
, x̃i,2 = d̄i,2(ỹ−i,2)−

ki

ri−ci

x̃i,2, x̃i,2 > d̄i,2(ỹ−i,2)−
ki

ri−ci

for all i, wherex̃ := (x̃1,2, x̃2,2) andk := (k1, k2). At equilibrium (η1, η2) in period

2, each firm either places no orders or orders up to its second-period demand regardless

of the beginning inventory levels.325

The proof hinges on six claims stated and proven in the sequel. Claims 1 and 2 are

proven under the following assumption whose validity is established in Claim 3.
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Assumption 2. Consider a specific firmi ∈ {1, 2}. Firm −i using its equilibrium

strategyη−i is not indifferent between ordering and not ordering in period 2, if no

customers switch from firmi to firm−i in both periods, i.e.,y−i,1 6= d−i,1 + d−i,2 −330

k
−i

r
−i−c

−i
.

If yi,2 = xi,2, then by Claim 1 it follows thatyi,1 = d̄i,1(y−i,1) + d̄i,2(y−i,2)

(conditional on Assumption 2). Else, ifyi,2 = d̄i,2(y−i,2) > xi,2, then it follows from

Claim 2 thatyi,1 ∈ {xi,1, d̄i,1(y−i,1)} (again, conditional on Assumption 2). Claim 3

shows that Assumption 2 can be made without loss of generality, that it is always valid.

Therefore, collectively, Claims 1-3 imply for alli that

yi,1 ∈ {xi,1, d̄i,1(y−i,1), d̄i,1(y−i,1) + d̄i,2(y−i,2)}. (B.1)

In words, at equilibrium(η1, η2) in period 1, each firm chooses one of three options:

do not order, order up to first-period demand, or order up to cumulative demand over

two periods. Claims 4 and 5 rule out the first two:yi,1 = xi,1 andyi,1 = d̄i,1(y−i,1),

respectively, for each firmi. Claim 6 rules out the only remaining possibility for equi-335

librium, (y1,1, y2,1) = (d1,1+d1,2, d2,1+d2,2). We thus conclude that this two-period

game has no subgame-perfect equilibrium in pure Markov strategies. �

Claim 1. Suppose Assumption 2 is valid for firmi. At equilibrium(η1, η2), firm i does

not order in period 2 only if it orders up to its cumulative two-period demand in period

1, i.e.,yi,2 = xi,2 impliesyi,1 = d̄i,1(y−i,1) + d̄i,2(y−i,2).340

Proof of Claim 1. To haveyi,2 = xi,2, we must haveyi,1 > d̄i,1(y−i,1), since other-

wise we would havexi,2 = 0 < di,2 − ki

ri−ci
(see Condition 2), which would imply

yi,2 > xi,2. Therefore,

Ji(ηi, η−i) = (ri − ci)d̄i,1(y−i,1)− ki + cixi,1 + (δiri − ci − hi)xi,2

−δi(ri + hi)(xi,2 − d̄i,2(y−i,2))
+.

Definex̃−i,2 := (y−i,1 − d−i,1)
+ and

ỹ−i,2 :=







d−i,2, x̃−i,2 < d−i,2 −
k
−i

r
−i−c

−i

x̃−i,2, x̃−i,2 > d−i,2 −
k
−i

r
−i−c

−i

.
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Note thatx̃−i,2 6= d−i,2 −
k
−i

r
−i−c

−i
due to Assumption 2. Sinceyi,1 > d̄i,1(y−i,1), we

havex−i,2 = x̃−i,2. Hence, the following implication is true:

yi,2 ≥ di,2 ⇒ y−i,2 = ỹ−i,2. (B.2)

Let η̂i = (η̂i,1, η̂i,2) be an alternative strategy for firmi such that345

η̂i,1(xi,1, x−i,1) = d̄i,1(y−i,1) + d̄i,2(ỹ−i,2)

η̂i,2(d̄i,2(ỹ−i,2), x̃−i,2) = d̄i,2(ỹ−i,2).

Let (x̂i,2, x̂−i,2) and(ŷi,2, ŷ−i,2) denote the inventory levels at the beginning and at

the end of period 2 under(η̂i, η−i), respectively. We have

(x̂i,2, x̂−i,2) = (d̄i,2(ỹ−i,2), x̃−i,2) and (ŷi,2, ŷ−i,2) = (d̄i,2(ỹ−i,2), ỹ−i,2)

whereŷ−i,2 = ỹ−i,2 is due to subgame perfection. Therefore,

Ji(η̂i, η−i) = (ri − ci)d̄i,1(y−i,1)− ki + cixi,1 + (δiri − ci − hi)d̄i,2(ỹ−i,2).

FromJi(ηi, η−i) ≥ Ji(η̂i, η−i) andδiri − ci − hi > 0 (see Condition 3), we conclude

xi,2 ≥ d̄i,2(ỹ−i,2). This together with (B.2) allows us to also concludey−i,2 = ỹ−i,2.

In view of this,Ji(ηi, η−i) ≥ Ji(η̂i, η−i) now leads toxi,2 = d̄i,2(y−i,2), which in

turn leads toyi,1 = d̄i,1(y−i,1) + d̄i,2(y−i,2). �350

Claim 2. Suppose Assumption 2 is valid for firmi. At equilibrium (η1, η2), firm i

orders in period 2 only if it either places no orders in period1 or orders up to its

first-period demand, i.e.,yi,2 > xi,2 impliesyi,1 ∈ {xi,1, d̄i,1(y−i,1)}.

Proof of Claim 2. To haveyi,2 > xi,2, we must haveyi,2 = d̄i,2(y−i,2). This leads to

Ji(ηi, η−i) = (ri − ci)min(yi,1, d̄i,1(y−i,1))− ((1− δi)ci + hi)xi,2

−kiI{yi,1 > xi,1}+ cixi,1 + δi(ri − ci)d̄i,2(y−i,2)− δiki.

Definex̃−i,2 := (y−i,1 − d−i,1)
+ and355

ỹ−i,2 :=







d−i,2, x̃−i,2 < d−i,2 −
k
−i

r
−i−c

−i

x̃−i,2, x̃−i,2 > d−i,2 −
k
−i

r
−i−c

−i

.
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Note thatx̃−i,2 6= d−i,2 −
k
−i

r
−i−c

−i
due to Assumption 2. Sinceyi,2 = d̄i,2(y−i,2), we

haved̄−i,2(yi,2) = d−i,2. Hence, the following implications are true:

yi,1 ≥ di,1 ⇒ x−i,2 = x̃−i,2 ⇒ y−i,2 = ỹ−i,2. (B.3)

Let η̂i = (η̂i,1, η̂i,2) be an alternative strategy for firmi such that

η̂i,1(xi,1, x−i,1) = d̄i,1(y−i,1)

η̂i,2(0, x̃−i,2) = d̄i,2(ỹ−i,2).

Let (x̂i,2, x̂−i,2) and(ŷi,2, ŷ−i,2) denote the inventory levels at the beginning and at the

end of period 2 under(η̂i, η−i), respectively. We have(x̂i,2, x̂−i,2) = (0, x̃−i,2) and

(ŷi,2, ŷ−i,2) = (d̄i,2(ỹ−i,2), ỹ−i,2), whereŷ−i,2 = ỹ−i,2 is due to subgame perfection.

Therefore,360

Ji(η̂i, η−i) = (ri − ci)d̄i,1(y−i,1)− ki + cixi,1 + δi(ri − ci)d̄i,2(ỹ−i,2)− δiki.

We must haveyi,1 ≤ d̄i,1(y−i,1), since otherwise we would have((1−δi)ci+hi)xi,2 >

0 and d̄i,2(y−i,2) = d̄i,2(ỹ−i,2) (see (B.3)), which would result inJi(η̂i, η−i) >

Ji(ηi, η−i). This implies that

Ji(ηi, η−i) = (ri − ci)yi,1− kiI{yi,1 > xi,1}+ cixi,1 + δi(ri − ci)d̄i,2(y−i,2)− δiki.

Let us now compareJi(ηi, η−i) with Ji(η̂i, η−i). If yi,1 > xi,1, then

Ji(ηi, η−i)− Ji(η̂i, η−i)

ri − ci
= yi,1 − d̄i,1(y−i,1) + δi(d̄i,2(y−i,2)− d̄i,2(ỹ−i,2)).

We note that

d̄i,2(y−i,2)− d̄i,2(ỹ−i,2) = αi (d−i,2 − y−i,2)
+ − αi (d−i,2 − ỹ−i,2)

+

≤ αi (ỹ−i,2 − y−i,2)
+

≤ αi (x̃−i,2 − x−i,2)

= αi (y−i,1 − d−i,1)
+ − αi

(
y−i,1 − d̄−i,1(yi,1)

)+

≤ αiα−i(di,1 − yi,1)
+

≤ αiα−i(d̄i,1(y−i,1)− yi,1)
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where the second inequality follows from̃x−i,2 ≥ x−i,2, the definition of̃y−i,2, and

y−i,2 ∈







d−i,2, x−i,2 < d−i,2 −
k
−i

r
−i−c

−i

{d−i,2, x−i,2}, x−i,2 = d−i,2 −
k
−i

r
−i−c

−i

x−i,2, x−i,2 > d−i,2 −
k
−i

r
−i−c

−i

.

Therefore, ifyi,1 > xi,1, then

Ji(ηi, η−i)− Ji(η̂i, η−i)

ri − ci
≤ (yi,1 − d̄i,1(y−i,1))(1 − δiαiα−i).

This implies the desired result, because1− δiαiα−i > 0. �365

Claim 3. At equilibrium(η1, η2), we must haveyi,1 6= di,1 + di,2 −
ki

ri−ci
for all i.

Proof of Claim 3. Suppose, for somei, yi,1 6= di,1 + di,2 − ki

ri−ci
and y−i,1 =

d−i,1 + d−i,2 −
k
−i

r
−i−c

−i
. Claims 1 and 2 would then imply for firm−i thaty−i,1 ∈

{x−i,1, d̄−i,1(yi,1), d̄−i,1(yi,1) + d̄−i,2(yi,2)}. Sincex−i,1 < y−i,1 < d−i,1 + d−i,2

(see Condition 2), we must have

y−i,1 = d̄−i,1(yi,1) and yi,1 < di,1. (B.4)

From (B.4), we have(xi,2, x−i,2) = (0, 0) and(yi,2, y−i,2) = (di,2, d−i,2). Therefore,

Ji(ηi, η−i) = (ri − ci)yi,1 − kiI{yi,1 > xi,1}+ cixi,1 + δi(ri − ci)di,2 − δiki.

Let η̂i = (η̂i,1, η̂i,2) be an alternative strategy for firmi such that

η̂i,1(xi,1, x−i,1) = di,1

η̂i,2(0, (y−i,1 − d−i,1)
+) = di,2.

Let (x̂i,2, x̂−i,2) and(ŷi,2, ŷ−i,2) denote the inventory levels at the beginning and at

the end of period 2 under(η̂i, η−i), respectively. We have(x̂i,2, x̂−i,2) = (0, (y−i,1 −

d−i,1)
+) andŷi,2 = di,2. Therefore,370

Ji(η̂i, η−i) = (ri − ci)di,1 − ki + cixi,1 + δi(ri − ci)di,2 − δiki.

In view of Ji(ηi, η−i) ≥ Ji(η̂i, η−i) andxi,1 < di,1 − ki

ri−ci
(see Condition 4), we

must haveyi,1 = di,1 which contradicts (B.4).
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Now supposeyi,1 = di,1 + di,2 −
ki

ri−ci
for all i. There are three possibilities for

(yi,2, y−i,2).

The case in which(yi,2, y−i,2) = (di,2, d−i,2): In this case, we have

Ji(ηi, η−i) = (ri−ci)di,1− ((1−δi)ci+hi)xi,2−ki+cixi,1+δi(ri−ci)di,2−δiki.

Let η̂i = (η̂i,1, η̂i,2) be an alternative strategy for firmi such that375

η̂i,1(xi,1, x−i,1) = di,1

η̂i,2(0, (y−i,1 − d−i,1)
+) = di,2.

Let (x̂i,2, x̂−i,2) and(ŷi,2, ŷ−i,2) denote the inventory levels at the beginning and at

the end of period 2 under(η̂i, η−i), respectively. We have(x̂i,2, x̂−i,2) = (0, (y−i,1 −

d−i,1)
+) andŷi,2 = di,2. Therefore,

Ji(η̂i, η−i) = (ri − ci)di,1 − ki + cixi,1 + δi(ri − ci)di,2 − δiki.

This leads toJi(η̂i, η−i) > Ji(ηi, η−i) due to((1 − δi)ci + hi)xi,2 > 0 (see Condi-

tion 2). Therefore, this case cannot occur.380

The case in which(yi,2, y−i,2) = (xi,2, d̄−i,2(xi,2)) for somei: We have

Ji(ηi, η−i) = (ri − ci)di,1 − ki + cixi,1 + (δiri − ci − hi)xi,2.

Let η̂i = (η̂i,1, η̂i,2) be an alternative strategy for firmi such that

η̂i,1(xi,1, x−i,1) = di,1 + di,2

η̂i,2(di,2, (y−i,1 − d−i,1)
+) = di,2.

Let (x̂i,2, x̂−i,2) and(ŷi,2, ŷ−i,2) denote the inventory levels at the beginning and at the

end of period 2 under(η̂i, η−i), respectively. We have(x̂i,2, x̂−i,2) = (di,2, (y−i,1 −

d−i,1)
+) andŷi,2 = di,2. Therefore,385

Ji(η̂i, η−i) = (ri − ci)di,1 − ki + cixi,1 + (δiri − ci − hi)di,2.

This leads toJi(η̂i, η−i) > Ji(ηi, η−i) due toxi,2 < di,2 and(δiri− ci−hi) > 0 (see

Conditions 2 and 3). Therefore, this case cannot occur either. �

Claim 4. At equilibrium(η1, η2) we must haveyi,1 6= d̄i,1(y−i,1) for all i.
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Proof of Claim 4. Claims 1-3 imply that at(η1, η2) we must have, for alli,

yi,1 ∈ {xi,1, d̄i,1(y−i,1), d̄i,1(y−i,1) + d̄i,2(y−i,2)}. (B.5)

One consequence of this is that, for alli,

xi,2 =







0, yi,1 ∈ {xi,1, d̄i,1(y−i,1)}

d̄i,2(y−i,2), yi,1 = d̄i,1(y−i,1) + d̄i,2(y−i,2)
(B.6)

which in turn implies that

(yi,2, y−i,2) = (di,2, d−i,2). (B.7)

Suppose thatyi,1 = d̄i,1(y−i,1). Then, using (B.5)-(B.7), we have

Ji(ηi, η−i) = (ri − ci)d̄i,1(y−i,1)− ki + cixi,1 + δi((ri − ci)di,2 − ki).

Let η̂i = (η̂i,1, η̂i,2) be an alternative strategy for firmi such that390

η̂i,1(xi,1, x−i,1) = d̄i,1(y−i,1) + di,2

η̂i,2(di,2, (y−i,1 − d−i,1)
+) = di,2.

Let (x̂i,2, x̂−i,2) and(ŷi,2, ŷ−i,2) denote the inventory levels at the beginning and at the

end of period 2 under(η̂i, η−i), respectively. We have(x̂i,2, x̂−i,2) = (di,2, (y−i,1 −

d−i,1)
+) andŷi,2 = di,2. Therefore,

Ji(η̂i, η−i) = (ri − ci)d̄i,1(y−i,1)− ki + cixi,1

+δi(ri − ci)di,2 −(ci(1− δi) + hi)di,2
︸ ︷︷ ︸

>−δiki

> Ji(ηi, η−i)

where the inequality is due to Condition (4). Hence, ifyi,1 = d̄i,1(y−i,1), firm i can do

strictly better by unilaterally deviating tôηi. �395

Claim 5. At equilibrium(η1, η2), we must haveyi,1 6= xi,1 for all i.
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Proof of Claim 5. Suppose thatyi,1 = xi,1. Then, using (B.5)-(B.7), we have

Ji(ηi, η−i) = (ri − ci)xi,1 + cixi,1 + δi((ri − ci)di,2 − ki).

Let η̂i = (η̂i,1, η̂i,2) be an alternative strategy for firmi such that

η̂i,1(xi,1, x−i,1) = d̄i,1(y−i,1)

η̂i,2(0, (y−i,1 − d−i,1)
+) = di,2.

Let (x̂i,2, x̂−i,2) and(ŷi,2, ŷ−i,2) denote the inventory levels at the beginning and at

the end of period 2 under(η̂i, η−i), respectively. We have(x̂i,2, x̂−i,2) = (0, (y−i,1 −400

d−i,1)
+) andŷi,2 = di,2. Therefore,

Ji(η̂i, η−i) = (ri − ci)d̄i,1(y−i,1)− ki
︸ ︷︷ ︸

>(ri−ci)xi,1

+cixi,1 + δi((ri − ci)di,2 − ki)

> Ji(ηi, η−i)

where the inequality is due to Condition (2). Therefore, ifyi,1 = xi,1, firm i can do

strictly better by unilaterally deviating tôηi. �

Claim 6. At equilibrium(η1, η2), we must have(y1,1, y2,1) 6= (d1,1+d1,2, d2,1+d2,2).

Proof of Claim 6. Claims 1-5 imply that, at equilibrium(η1, η2), we must have405

(y1,1, y2,1) = (d1,1 + d1,2, d2,1 + d2,2) (B.8)

(x1,2, y2,2) = (d1,2, d2,2) (B.9)

(y1,2, y2,2) = (d1,2, d2,2). (B.10)

Consider the specific firmi that meets Conditions (5a)-(5b). Then, using (B.8)-

(B.10), we have

Ji(ηi, η−i) = (ri−ci)(di,1+di,2)−(ri+hi)di,2−ki+cixi,1+δi((ri−ci)di,2+cidi,2).

Let η̂i = (η̂i,1, η̂i,2) be an alternative strategy for firmi such that

η̂i,1(xi,1, x−i,1) = xi,1

η̂i,2(0, x̃−i,2) = d̄i,2(x̃−i,2)
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wherex̃−i,2 := d−i,2 − α−i(di,1 − xi,1). Note that, due to Condition (5a), we have

x̃−i,2 > d−i,2 −
k−i

r−i − c−i

.

Let (x̂i,2, x̂−i,2) and(ŷi,2, ŷ−i,2) denote the inventory levels at the beginning and at the

end of period 2 under(η̂i, η−i), respectively. We have(x̂i,2, x̂−i,2) = (0, x̃−i,2) and

(ŷi,2, ŷ−i,2) = (d̄i,2(x̂−i,2), x̂−i,2), whereŷ−i,2 = x̂−i,2 is due to subgame perfection.

Therefore,410

Ji(η̂i, η−i) = (ri − ci)xi,1 + cixi,1

+δi((ri − ci)(di,2 + αiα−i(di,1 − xi,1)))− δiki

> Ji(ηi, η−i)

where the inequality is due to Condition (5b). �

Appendix C. Existence of Equilibrium in Multiple-Period Inventory Competition

Proof of Proposition 2.Consider the single-firm inventory control problem in which

firm i makes inventory decisions to meet its own first-choice demandsdi,1, . . . , di,T

assuming that firm−i and its first-choice demandsd−i,1, . . . , d−i,T do not exists. Let415

µi = (µi,1, . . . , µi,T ) be an optimal policy for firmi, which is known to exist. Let

(xi,t, yi,t) be firmi’s inventory levels at the beginning and at the end of periodt, gen-

erated recursively by

yi,t = µi,t(xi,t) (C.1)

xi,t+1 = (yi,t − di,t)
+. (C.2)

We first argue that firmi meets its demand in all periods, i.e.,yi,t ≥ di,t for all t. To

see this, assume that we haveyi,t̃ < di,t̃ in periodt̃ ∈ {1, . . . , T } for the first time. It420

must be that̃t ≥ 2 andyi,t̃ = xi,t̃ ≥ di,t̃ −
ki

ri−ci
> 0; otherwise, firmi could strictly

improve its total profit by ordering up todi,t̃ in periodt̃. Let t̂ ∈ {1, . . . , t̃− 1} be the

last period (before period̃t) in which firm i places an order, i.e.,yi,t̂ > xi,t̂. We must

haveyi,t̂ = di,t̂ + · · · + di,t̃−1 + xi,t̃ andxi,t̂ < di,t̂; otherwise, firmi can reduce its
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holding cost by delaying its ordering decision to a later period in which the inventory425

carried from the previous period is not sufficient to meet thedemand in that period.

Let µA
i be a policy for firmi such that

µA
i,t(xi,t) = yi,t, for t = 1, . . . , t̂− 1

µA
i,t̂
(xi,t̂) = di,t̂ + · · ·+ di,t̃−1

µA
i,t(di,t + · · ·+ di,t̃−1) = di,t + · · ·+ di,t̃−1, for t = t̂+ 1, . . . , t̃− 1

µA
i,t̃
(0) = 0

µA
i,t(xi,t) = yi,t, for t = t̃+ 1, . . . , T.

Let Ji(µi) andJi(µA
i ) denote the total profits corresponding to the policiesµi andµA

i ,

respectively. SinceµA
i is not an optimal policy, we have

Ji(µi)− Ji(µ
A
i ) =



riδ
t̃−1
i − ciδ

t̂−1
i − hi

t̃−1∑

t=t̂

δt−1
i



 x̃i,t̃ > 0

which leads toriδ
t̃−1
i − ciδ

t̂−1
i −hi

∑t̃−1
t=t̂

δt−1
i > 0. LetµB

i be another policy for firm430

i such that

µB
i,t(xi,t) = yi,t, for t = 1, . . . , t̂− 1

µB
i,t̂
(xi,t̂) = di,t̂ + · · ·+ di,t̃

µB
i,t(di,t + · · ·+ di,t̃) = di,t + · · ·+ di,t̃, for t = t̂+ 1, . . . , t̃

µB
i,t(xi,t) = yi,t, for t = t̃+ 1, . . . , T.

Let Ji(µB
i ) denote the total profit corresponding to the policyµB

i . We have

Ji(µ
B
i )− Ji(µi) =



riδ
t̃−1
i − ciδ

t̂−1
i − hi

t̃−1∑

t=t̂

δt−1
i



 (di,t̃ − x̃i,t̃) > 0

which contradicts the optimality ofµi. Therefore,yi,t ≥ di,t for all t.

Now, consider the two-firm multiple-period inventory competition model. For all

i ∈ {1, 2}, let ηi = (ηi,1, . . . , ηi,T ) be such thatηi,t(x̃i,t, x̃−i,t) = max{x̃i,t, yi,t} for435

all t and all x̃i,t, x̃−i,t ≥ 0, whereyi,t is generated by (C.1)-(C.2). It follows that if

firm i usesηi, then firmi’s inventory decision at the end of any periodt will be yi,t and
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no demand will switch from firmi to firm −i regardless of the strategy used by firm

−i. As a result, if firmi usesηi, firm −i cannot possibly improve its total profit (in a

strict sense) by unilaterally switching fromη−i to an alternative strategy. �440
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