QUESTIONS

1. Consider the following matrix A and let \bar{A} denote a Jordan canonical form representation of A. Find the distinct eigenvalues of A and their algebraic and geometric multiplicities. How many Jordan blocks would \bar{A} have for each distinct eigenvalue of $(A \text{ or } \bar{A})$? Find chains of generalized eigenvectors (with maximum number of linearly independent generalized eigenvectors in each chain) for each distinct eigenvalue. What is an appropriate similarity transformation that will give us \bar{A}? How does \bar{A} look like? Hint: You can use the MATLAB commands rank and null (however, keep in mind that some MATLAB commands are not always reliable).

$$A = \begin{bmatrix} -1 & 0 & -1 & 1 & 1 & 3 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 2 & 1 & 2 & -1 & -1 & -6 & 0 \\ -2 & 0 & -1 & 2 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ -1 & -1 & 0 & 1 & 2 & 4 & 1 \end{bmatrix}$$

2. Consider the system $\dot{x} = Ax$ where

$$A = \begin{bmatrix} 3 & -3 & 3 \\ 0 & -3 & 0 \\ 6 & -3 & 0 \end{bmatrix}.$$

(i) Find the Jordan canonical form representation of A by a real similarity transformation.
(ii) Using your answer in part (i), find the values of e^{At} at $t = 0.1$ and $t = 1$.
(iii) Verify your answer in part (ii) with MATLAB’s “expm” function.
(iv) Let $x(t)$ be the solution to $\dot{x} = Ax$ with $x(0) = [1 \ 0 \ 0]^T$. Find $x(0.1)$ and $x(1)$.
(v) Let $z(t)$ be the solution to $\dot{z} = Az$ with $z(1) = [0 \ 1 \ 0]^T$. Find $z(1.1)$ and $z(2)$.
(vi) Find all possible initial states $x(0)$ such that $x(t) \to 0$.

3. Consider the system $\dot{x} = Ax$ where

$$A = \begin{bmatrix} -1 & 1 & 1 \\ -1 & -1 & 3 \\ 0 & 0 & 1 \end{bmatrix}.$$

(i) Find the real Jordan canonical form representation of A by a real similarity transformation, i.e., find a real Q such that

$$Q^{-1}AQ = \begin{bmatrix} S_1 \\ \vdots \\ S_q \\ \lambda_{2q+1} \\ \vdots \\ \lambda_n \end{bmatrix},$$

where $S_i = \begin{bmatrix} \sigma_i & w_i \\ -w_i & \sigma_i \end{bmatrix}$, $i = 1, ..., q$, are real matrices, $\sigma_1 + jw_1, \sigma_1 - jw_1, ..., \sigma_q + jw_q, \sigma_q - jw_q$ are complex eigenvalues of A and $\lambda_{2q+1}, ..., \lambda_n$ are real eigenvalues of A.
(ii) Find a one dimensional subspace invariant under $\dot{x} = Ax$. Find a two dimensional subspace invariant under $\dot{x} = Ax$.

(iii) Find all possible initial states $x(0)$ such that $x(t) \to 0$.

4. Consider the continuous-time dynamical system

$$
\dot{x}(t) = \begin{bmatrix} -2 & 6 \\ -6 & -2 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)
$$

$$
y(t) = [1 \ 0] x(t),
$$

with initial state

$$
x(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.
$$

(i) Find the state transition matrix $\Phi(t, t_0)$ using the Laplace transformation method.

(ii) Find the output $y(t)$ for $t \geq 0$ in closed form (not a numerical solution) due to the input $u(t) = e^{-t}$ for $t \geq 0$.

(iii) Verify your answer in part (ii) by simulating the system in MATLAB using the lsim function with a time vector generated by $T = [0 : 0.01 : 3]$. Typing in help command-name (for instance help lsim) gives information about a particular command. Provide a plot with three subplots using the subplot command where the first subplot shows the output obtained by the lsim command versus time, the second subplot shows the closed-form output obtained in part (ii) versus time, and the third subplot shows the difference between the two versus time.