QUESTIONS

2. Consider the following matrix A and let \bar{A} denote a Jordan canonical form representation of A. Find the distinct eigenvalues of A and their algebraic and geometric multiplicities. How many Jordan blocks would \bar{A} have for each distinct eigenvalue of $(A$ or $\bar{A})$? Find chains of generalized eigenvectors (with maximum number of linearly independent generalized eigenvectors in each chain) for each distinct eigenvalue. What is an appropriate similarity transformation that will give us \bar{A}? How does \bar{A} look like? Hint: You can use the MATLAB commands `rank` and `null` (however, keep in mind that some MATLAB commands are not always reliable).

$$
A = \begin{bmatrix}
-1 & 0 & -1 & 1 & 1 & 3 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
2 & 1 & 2 & -1 & -1 & -6 & 0 \\
-2 & 0 & -1 & 2 & 1 & 3 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
-1 & -1 & 0 & 1 & 2 & 4 & 1
\end{bmatrix}
$$

3. (OPTIONAL FOR EXTRA CREDIT)

 (i) Show that any matrix norm satisfies

 $$
 ||A|| \geq \max |\lambda(A)|,
 $$

 where $\max |\lambda(A)|$ is the largest eigenvalue of A in magnitude.

 (ii) Show that the eigenvalues of A^*A are always nonnegative reals.

 (iii) Show that the matrix norm

 $$
 ||A||_2 = \sup_{x \neq 0} \frac{||Ax||_2}{||x||_2}
 $$

 satisfies

 $$
 ||A||_2 \geq \sqrt{\max \lambda(A^*A)}.
 $$

4. (OPTIONAL FOR EXTRA CREDIT) Consider the vector space $L_2([-1, 1], \mathbb{R})$ of measurable, real-valued, and square integrable functions defined on $[-1, 1]$ with the inner product

 $$
 < x, y > = \int_{-1}^{1} x(t)y(t)dt.
 $$

 Find an orthonormal set of vectors $\{q^1, q^2, q^3\}$ such that $\text{span}\{q^1, q^2, q^3\} = \text{span}\{1, t, t^2\}$.

6. Use the matrix exponential series to evaluate e^{At} for

 (i) $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$

 (ii) $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$