QUESTIONS

1. Consider the differential equation
 \[\ddot{x} + 3\dot{x} + 2x = 0. \]
 (i) Show that the set of solutions to this differential equation is a vector space over the reals.
 (ii) Find the dimension of this vector space.

2. Consider Figure 3.1 in the textbook.
 (i) Find the transformation \(P \) relating the two basis’ \(\{q_1, i_2\} \) and \(\{q_2, i_1\} \).
 (ii) Find the representation \(\beta_1 \) of \(x \) with respect to the basis \(\{q_1, i_2\} \).
 (iii) Using your results in (i)-(ii), find the representation \(\beta_2 \) of \(x \) with respect to the basis \(\{q_2, i_1\} \).

3. (i) Show that
 \[
 e_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad e_3 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}
 \]
 are linearly independent.
 (ii) A linear operator \(L \) maps \((\mathbb{R}^3, \mathbb{R})\) to \((\mathbb{R}^3, \mathbb{R})\). It is known that
 \[
 L(e_1) = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}, \quad L(e_2) = \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix}, \quad L(e_3) = \begin{bmatrix} 1 \\ 1 \\ 5 \end{bmatrix}.
 \]
 Find \(A \), the matrix representation of \(L \), with respect to the basis \(\{e_i\}_{i=1}^3 \).

4. Textbook Problem 3.5.

7. Consider any \(m \times n \) real matrix \(A \) with \(\rho(A) = n \). Show that \(\det(A^T A) \neq 0 \) where \(A^T \) is the transpose of \(A \).

8. Diagonalize the matrices \(A_1, A_2, A_3 \) given in Textbook Problem 3.13 by appropriate similarity transformations.