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Summary The Efficient Method of Moments (EMM) estimator popularized by Gallant
and Tauchen (1996) is an indirect inference estimator based on the simulated auxiliary score
evaluated at the sample estimate of the auxiliary parameters. We study an alternative estimator
that uses the sample auxiliary score evaluated at the simulated binding function, which maps
the structural parameters of interest to the auxiliary parameters. We show that the alternative
estimator has the same asymptotic properties as the EMM estimator but in finite samples
behaves more like the distance-based indirect inference estimator of Gouriéroux, Monfort and
Renault (1993).
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1. INTRODUCTION

Indirect inference estimators take advantage of a simplified auxiliary model that is easier to esti-
mate than a proposed structural model. The estimation consists of two stages. First, an auxiliary
statistic is calculated from the observed data. Then an analytical or simulated mapping of the
structural parameters to the auxiliary statistic is used to calibrate an estimate of the struc-
tural parameters. The simulation-based indirect inference estimators are typically placed into
one of two categories: score-based estimators made popular by Gallant and Tauchen (1996b),
or distance-based estimators proposed by Smith (1993) and refined by Gouriéroux et al. (1993).
However, many studies have shown (e.g. Michaelides and Ng, 2000; Ghysels et al., 2003; Duf-
fee and Stanton, 2008) that the score-based estimators often have poor finite sample properties
relative to the distance-based estimators. In this paper we study an alternative score-based esti-
mator that utilizes the sample auxiliary score evaluated with the auxiliary parameters estimated
from simulated data. We show that this alternative estimator is asymptotically equivalent to the
Gallant and Tauchen (1996b) score-based estimator but has finite sample properties that are
very close to the distance-based estimators.

2. REVIEW OF INDIRECT INFERENCE

Indirect inference (II) techniques were introduced into the econometrics literature by Smith
(1993), Gouriéroux et al. (1993), Bansal et al. (1994), Bansal et al. (1995) and Gallant and
Tauchen (1996b), and are surveyed in Gouriéroux and Monfort (1996) and Jiang and Turnbull
(2004). There are four components present in simulation-based II: (1) a true structural model
whose parameters θ are one’s ultimate interest but are difficult to directly estimate; (2) simulated
observations from the structural model for a given θ; (3) an auxiliary approximation to the
structural model whose parameters µ are easy to estimate; and (4) the binding function, a
mapping from µ to θ uniquely connecting the parameters of these two models.

To be more specific, assume that a sample of n observations {yt}t=1,...,n are generated from a
strictly stationary and ergodic probability model Fθ, θ ∈ Rp, with density p(y−m, . . . , y−1, y0; θ)
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that is difficult or impossible to evaluate analytically.1 Typical examples are continuous time
diffusion models and dynamic stochastic general equilibrium models. Define an auxiliary model
F̃µ in which the parameter µ ∈ Rr, with r ≥ p, is easier to estimate than θ. For ease of exposition,
the auxiliary estimator of µ is defined as the quasi-maximum likelihood estimator (QMLE) of

the model F̃µ

µ̃n = arg max
µ

Q̃n ({yt}t=1,...,n, µ) , (2.1)

Q̃n ({yt}t=1,...,n, µ) =
1

n−m

n∑
t=m+1

f̃(yt;xt−1, µ) , (2.2)

where f̃(yt;xt−1, µ) is the log density of yt for the model F̃µ conditioned on xt−1 = {yi}i=t−m,...,t−1,

m ∈ N. We define g̃(yt;xt−1, µ) = ∂f̃(yt;xt−1,µ)
∂µ as the r×1 auxiliary score vector. For more general

Q̃n, we refer the reader to Gouriéroux and Monfort (1996).
II estimators use the auxiliary model information to obtain estimates of the structural param-

eters θ. The link between the auxiliary model parameters and the structural parameters is given
by the binding function µ(θ), which is the functional solution of the asymptotic optimization
problem

µ(θ) = arg max
µ

EFθ [f̃(yt;xt−1, µ)], (2.3)

where limn→∞ Q̃n ({yt}t=1,...,n, µ) = EFθ [f̃(yt;xt−1, µ)], and EFθ [·] means that the expectation
is taken with respect to Fθ. In order for µ(θ) to define a unique mapping it is assumed that µ(θ)

is one-to-one and that ∂µ(θ)
∂θ′ has full column rank.

II estimators differ in how they use (2.3) to define an estimating equation. The distance-based
II estimator finds θ to minimize the (weighted) distance between µ(θ) and µ̃n. The score-based
II estimator finds θ by solving EFθ [g̃(yt;xt−1, µ̃n)] = 0, the first order condition associated with
(2.3).2 Typically, the analytic forms of µ(θ) and EFθ [g̃(yt;xt−1, µ)] are not known and simulation-
based techniques are used to compute the two types of II estimators.

For simulation-based II, it is necessary to be able to easily generate simulated observations
from Fθ for a given θ. These simulated observations are typically drawn in two ways. First, a
long pseudo-data series of size S · n is simulated giving

{yt(θ)}t=1,...,Sn, S ≥ 1. (2.4)

Alternatively, S pseudo-data series of size n are simulated giving

{yst (θ)}t=1,...,n, s = 1, . . . , S, S ≥ 1. (2.5)

Using the simulated observations (2.4) or (2.5), the distance-based II estimators (subsequently
also referred to as D estimators) are minimum distance estimators defined as

θ̂Dj
S (Ω̃n) = arg min

θ
JDj
S (θ, Ω̃n) = arg min

θ

(
µ̃n − µ̃j

S(θ)
)′

Ω̃n

(
µ̃n − µ̃j

S(θ)
)
, j = L,A,M, (2.6)

where Ω̃n is a positive definite and symmetric weight matrix which may depend on the data

1For simplicity, we do not consider structural models with additional exogenous variables zt.
2Gallant and Tauchen (1996a) call the score-based II estimator the efficient method of moments (EMM) esti-

mator.
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through the auxiliary model, and the simulated binding functions are given by

µ̃L
S(θ) = argmax

µ
Q̃Sn ({yt(θ)}t=1,...,Sn, µ) , (2.7)

µ̃A
S (θ) = arg max

µ
S−1

S∑
s=1

Q̃n ({yst (θ)}t=1,...,n, µ) , (2.8)

µ̃M
S (θ) = S−1

S∑
s=1

arg max
µ

Q̃n ({yst (θ)}t=1,...,n, µ) . (2.9)

The superscripts L, A, and M indicate how the binding function is computed from the sim-
ulated data: “L” denotes use of long simulations (2.4) in the objective function; “A” denotes
maximizing an aggregation of S objective functions using (2.5); “M” denotes use of the mean
of S estimated binding functions based on (2.5). The M-type estimator is more computationally
intensive than the A and L-type estimators, but exhibits superior finite sample properties in
certain circumstances, as shown by Gouriéroux et al. (2000).

Using (2.4) or (2.5), the score-based II estimators (subsequently also referred to as S1 estima-
tors) are one-step GMM estimators defined as

θ̂Sj1
S (Σ̃n) = arg min

θ
JSj1
S (θ) = arg min

θ
g̃j
S(θ, µ̃n)′Σ̃ng̃

j
S(θ, µ̃n), j = L,A, (2.10)

where Σ̃n is a positive definite and symmetric weight matrix which may depend on the data
through the auxiliary model, and the simulated scores are given by

g̃L
S(θ, µ̃n) =

1

Sn−m

Sn∑
t=m+1

g̃(yt(θ);xt−1(θ), µ̃n) (2.11)

g̃A
S (θ, µ̃n) = S−1

S∑
s=1

1

n−m

n∑
t=m+1

g̃(yst (θ);x
s
t−1(θ), µ̃n), . (2.12)

Because (2.10) fixes the binding function at the sample estimate µ̃n no M-type estimator is
available.

Under regularity conditions described in Gouriéroux and Monfort (1996), the distance-based
estimators (2.6) and score-based estimators (2.10) are consistent for θ0 (true parameter vec-
tor) and asymptotically normally distributed. The limiting weight matrices that minimize the

asymptotic variances of these estimators are Ω̃∗ = MµĨ−1Mµ and Σ̃∗ = Ĩ−1, where Ĩ =
limn→∞ varFθ (

√
ng̃n(yn, µ(θ0))) with g̃n(yn, µ(θ)) = 1

n−m
∑n
t=m+1 g̃(yt;xt−1, µ(θ)), and Mµ =

EFθ [H̃(yt;xt−1, µ(θ0))] with H̃(yt;xt−1, µ) = ∂2f̃(yt;xt−1,µ)
∂µ∂µ′ . Using consistent estimates of these

optimal weight matrices, the distance-based and score-based estimators are asymptotically equiv-
alent with asymptotic variance matrix given by

V ∗S =

(
1 +

1

S

)(
M ′θĨ−1Mθ

)−1

=

(
1 +

1

S

)(
∂µ(θ0)′

∂θ
M ′µĨ−1Mµ

∂µ(θ0)

∂θ′

)−1

, (2.13)

where

Mθ =

{
∂

∂θ′
EFθ [g̃(yt;xt−1, µ)]

}∣∣∣∣
µ=µ(θ0)

.

3. ALTERNATIVE SCORE-BASED II ESTIMATOR

Gouriéroux and Monfort (1996, pg. 71) mentioned two alternative II estimators that they claimed
are less efficient than the optimal estimators described in the previous section, and referred the
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reader to Smith (1993) for details. The first one is the simulated quasi-maximum likelihood
(SQML) estimator defined as

θ̂SQMLj
S = arg max

θ
Q̃n

(
{yt}t=1,...,n, µ̃

j
S(θ)

)
, j = L,A,M. (3.1)

Smith (1993) showed that (3.1) is consistent and asymptotically normal with asymptotic variance
matrix given by

V SQML
S =

(
1 +

1

S

)[
∂µ(θ0)′

∂θ
Mµ

∂µ(θ0)

∂θ′

]−1
∂µ(θ0)′

∂θ
Ĩ ∂µ(θ0)

∂θ′

[
∂µ(θ0)′

∂θ
Mµ

∂µ(θ0)

∂θ′

]−1

, (3.2)

which he showed is strictly greater (in a matrix sense) than the asymptotic variance (2.13) of
the efficient II estimators. As noted by Gouriéroux et al. (1993), the asymptotic variance of the

SQML estimator is efficient only when Ĩ = −Mµ.
The second alternative II estimator mentioned by Gouriéroux and Monfort (1996, pg. 71),

which we call the S2 estimator, is an alternative score-based estimator of the form

θ̂Sj2
S (Σ̃n) = arg min

θ
JSj2(θ, Σ̃n) = arg min

θ
g̃j
n(θ)′Σ̃ng̃

j
n(θ), (3.3)

where

g̃j
n(θ) =

1

n−m

n∑
t=m+1

g̃(yt;xt−1, µ̃
j
S(θ)), j = L,A,M. (3.4)

The S2 estimator was not explicitly considered in Smith (1993). In contrast to the simulated
scores (2.11) and (2.12), the score in (3.4) is evaluated with the observed data and the simulated
binding function. The following Proposition gives the asymptotic properties of (3.3).

Proposition 3.1. Under the regularity conditions in Gouriéroux and Monfort (1996), the score-

based II estimators θ̂Sj2S (Σ̃n) (j=L,A,M) defined in (3.3) are consistent and asymptotically nor-
mal, when S is fixed and n→∞ :

√
n(θ̂Sj2S (Σ̃n)− θ0)

d→ N

(
0,

(
1 +

1

S

)
[M ′θΣMθ]

−1
[
M ′θΣĨΣMθ

]
[M ′θΣMθ]

−1
)
. (3.5)

The proof is given in Appendix A. We make the following remarks:

Remark 3.2. When Σ̃n is a consistent estimator of Ĩ−1, the asymptotic variance of θ̂Sj2
S (Σ̃n)

in (3.5) is equivalent to the asymptotic variance of Gallant and Tauchen’s score-based estimator

θ̂Sj1
S (Σ̃n), and is equivalent to (2.13). Contrary to the claim in Gouriéroux and Monfort (1996),

for a given auxiliary model the alternative score-based II estimator is not less efficient than the
optimal traditional II estimators.

Remark 3.3. To see the relationship between the two score-based estimators, (2.10) and (3.3),
note that the first order conditions (FOCs) of the optimization problem (2.3) defining µ(θ) are

0 = EFθ

[
∂f̃(yt;xt−1, µ)

∂µ

]∣∣∣∣∣
µ=µ(θ)

≡ g̃E(yt(θ), µ(θ)) ≡ g̃E(θ, µ(θ)) . (3.6)

This expression depends on θ through yt(θ) and µ(θ), and both score-based II estimators make use
of this population moment condition. The S1 and S2 estimators differ in how sample information
and simulations are used. For the S1 estimator, µ(θ) is estimated from the sample and simulated
values of yt(θ) are used to approximate EFθ [·]. For the S2 estimator, yt(θ) is obtained from the
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Indirect Inference Based on the Score 5

sample and simulated values of µ(θ) are used for calibration to minimize the objective function.
Because the S2 estimator (3.3) evaluates the sample auxiliary score with a simulated binding
function, it has certain properties that make it similar to the distance-based II estimator (2.6).

Remark 3.4. To see why the S1 and S2 estimators are asymptotically equivalent and efficient,
and the SQML estimator is generally inefficient, consider the FOCs defining these estimators.
From (2.10), the FOCs for the optimal S1 estimator are

0 =
∂g̃S(θ̂S , µ̃n)′

∂θ
Ĩ−1
n g̃n(yt;xt−1, µ̃n) , (3.7)

and, from (3.3), the FOCs for the optimal S2 estimator are

0 =
∂µ̃S(θ̂S)′

∂θ

∂g̃n(yt;xt−1, µ̃S(θ̂S))′

∂µ
Ĩ−1
n g̃n(yt;xt−1, µ̃S(θ̂S)) , (3.8)

where Ĩn is a consistent estimate of Ĩ. When n and S are large enough, µ̃S(θ̂S) ≈ µ̃n ≈ µ(θ0),
∂g̃S(θ̂S ,µ̃n)

∂θ′ ≈ Mθ,
∂g̃n(yt;xt−1,µ̃S(θ̂S))

∂µ′ ≈ Mµ, and Ĩn ≈ Ĩ. It follows that (3.7) and (3.8) can be
re-expressed as

0 = M ′θĨ−1g̃n(yt;xt−1, µ(θ0)) + op(1) , (3.9)

and

0 =
∂µ(θ0)′

∂θ
M ′µĨ−1g̃n(yt;xt−1, µ(θ0)) + op(1) . (3.10)

Using the result Mθ = Mµ
∂µ(θ0)
∂θ′ , it follows that the FOCs for the S1 and S2 estimators pick

out the optimal linear combinations of the over-identified auxiliary score and produce efficient II
estimators. In contrast, from (3.1) the FOCs for the SQML are

0 =
∂µS(θ0)′

∂θ
g̃n(yt;xt−1, µ(θ0)) + op(1) . (3.11)

Here, the muliplication by ∂µS(θ0)′

∂θ does not pick out the optimal linear combinations of the

auxiliary score unless Ĩ = −Mµ.

4. FINITE SAMPLE COMPARISON OF II ESTIMATORS

We compare the finite sample performance of the alternative score-based S2 estimator to the
traditional S1 and D estimators using an Ornstein-Uhlenbeck (OU) process. Our analysis is
motivated by Duffee and Stanton (2008), who compared the finite sample properties of tradi-
tional indirect estimators using highly persistent AR(1) models and found that the S1 estimator
is severely biased, has wide confidence intervals, and performs poorly in coefficient and over-
identification tests. We show that the alternative formulation of the score-based estimator leads
to a remarkable improvement in its finite sample performance.

4.1. Model Setup

The true data generating process is an OU process of the form

Fθ : dy = (θ0 − θ1y)dt+ θ2dW, dW ∼ iid N(0, dt) , (4.1)

and the auxiliary model is its Euler discretization

F̃µ : yt = µ0∆ + (1− µ1∆)yt−∆ + µ2

√
∆ξt−∆, ξt−∆ ∼ iid N(0, 1) . (4.2)

c© Royal Economic Society 2014
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Table 1. Just-Identified Estimation of the θ Parameters

Empirical Size of Likelihood Ratio Tests HLR1
0 : θ1 = θ10

n SN1 SN2 DN SL1 SL2 DL SA1 SA2 DA SM2 DM

θA
100 0.869 0.206 0.285 0.800 0.162 0.251 0.724 0.171 0.252 0.063 0.098
1000 0.321 0.082 0.083 0.314 0.076 0.080 0.288 0.078 0.082 0.058 0.060

θB
100 0.286 0.068 0.106 0.265 0.064 0.088 0.248 0.061 0.088 0.061 0.085
1000 0.090 0.053 0.057 0.097 0.051 0.052 0.095 0.051 0.055 0.047 0.048

Empirical Size of Likelihood Ratio Tests HLR
0 : (θ0, θ1, θ2) = (θ00, θ10, θ20)

n SN1 SN2 DN SL1 SL2 DL SA1 SA2 DA SM2 DM

θA
100 0.911 0.146 0.189 0.868 0.131 0.174 0.821 0.131 0.179 0.416 0.383
1000 0.401 0.070 0.067 0.396 0.073 0.069 0.381 0.070 0.070 0.140 0.128

θB
100 0.404 0.088 0.112 0.379 0.087 0.104 0.375 0.083 0.104 0.176 0.164
1000 0.128 0.058 0.057 0.117 0.063 0.057 0.117 0.064 0.057 0.068 0.055

Note: Empirical size of likelihood ratio tests for a nominal size α = 5% and true value of the parameter vector
(θ00, θ10, θ20). Results reported for just identified estimation of the OU process (4.1) with true parameter values:
θA = (0, 0.01, 1) and θB = (0, 0.1, 1).

Observations are generated from the exact solution of the OU process

yt =
θ0

θ1
(1− e−θ1∆) + e−θ1∆yt−∆ + θ2

√
1− e−2θ1∆

2θ1
εt, εt ∼ iid N(0, 1) . (4.3)

A comparison of (4.3) and (4.2) reveals that the binding function (2.3) has the form

µ0(θ) =
θ0

θ1∆

(
1− e−θ1∆

)
, µ1(θ) =

1

∆

(
1− e−θ1∆

)
, µ2(θ) = θ2

√
1− e−θ1∆

2θ1∆
(4.4)

and that µ̃n = (µ̃n0, µ̃n1, µ̃n2) is an asymptotically biased estimator of θ = (θ0, θ1, θ2) (see Lo,
1988). Without loss of generality, we set ∆ = 1 in equations (4.2) – (4.4) (see Fuleky, 2012).
The analytically tractable OU process gives us the opportunity to compute non-simulation-based
analogues (SN1, SN2, and DN) of the simulation-based estimators.

Because the finite sample performance of the estimators is mostly influenced by the speed of
mean reversion, in our data generating process we vary θ1 and consider the following two sets of
true parameter values θA = (0, 0.01, 1) and θB = (0, 0.1, 1). The values θA1 = 0.01 and θB1 = 0.1
correspond to autoregressive coefficients equal to e−0.01 = 0.99 and e−0.01 = 0.9, respectively,
in (4.3). In addition to estimating θ0, θ1, and θ2, we also consider the case when θ0 and θ2

are assumed to be known, and the indirect estimators of θ1 are over-identified (r > p). For
the simulations (2.4) and (2.5), we set S = 20, so that the simulation-based estimators have a
95% asymptotic efficiency relative to the non-simulation-based estimators (see equation (2.13)).
We analyze samples of size n = {100, 1000}, and our results are based on 1000 Monte Carlo
simulations.

c© Royal Economic Society 2014



Indirect Inference Based on the Score 7

Table 2. Over-Identified Estimation of the θ1 Parameter

Bias and [Root Mean Squared Error] of θ̂1

n SN1 SN2 DN SL1 SL2 DL SA1 SA2 DA SM2 DM

θA
100

.2637 .0254 .0281 .2509 .0241 .0268 .2531 .0242 .0269 -.0094 -.0086
[.3624] [.0415] [.0444] [.3524] [.0406] [.0437] [.3544] [.0408] [.0438] [.0296] [.0311]

1000
.0154 .0022 .0023 .0151 .0021 .0021 .0152 .0021 .0021 -.0023 -.0022

[.0268] [.0057] [.0057] [.0264] [.0057] [.0057] [.0265] [.0057] [.0058] [.0060] [.0060]

θB
100

.1409 .0175 .0242 .1430 .0149 .0218 .1430 .0149 .0219 -.0285 -.0214
[.2339] [.0569] [.0607] [.2395] [.0566] [.0602] [.2391] [.0566] [.0602] [.0634] [.0622]

1000
.0075 .0024 .0029 .0075 .0021 .0026 .0075 .0021 .0026 -.0017 -.0012

[.0179] [.0149] [.0151] [.0182] [.0152] [.0154] [.0182] [.0153] [.0154] [.0152] [.0153]

Empirical Size of Over-Identification Tests

n SN1 SN2 DN SL1 SL2 DL SA1 SA2 DA SM2 DM

θA
100 0.394 0.160 0.181 0.382 0.165 0.165 0.383 0.167 0.164 0.194 0.160
1000 0.149 0.085 0.089 0.148 0.082 0.076 0.147 0.080 0.076 0.091 0.088

θB
100 0.132 0.100 0.099 0.125 0.094 0.091 0.125 0.092 0.088 0.083 0.099
1000 0.058 0.054 0.052 0.060 0.055 0.051 0.060 0.056 0.052 0.059 0.051

Empirical Size of Likelihood Ratio Tests

n SN1 SN2 DN SL1 SL2 DL SA1 SA2 DA SM2 DM

θA
100 0.933 0.048 0.105 0.884 0.041 0.092 0.846 0.040 0.091 0.404 0.383
1000 0.451 0.039 0.038 0.432 0.045 0.041 0.418 0.045 0.042 0.132 0.127

θB
100 0.437 0.040 0.080 0.418 0.040 0.075 0.411 0.042 0.073 0.186 0.148
1000 0.133 0.052 0.056 0.118 0.053 0.063 0.118 0.053 0.064 0.057 0.061

Note: Results for the θA = (0, 0.01, 1) and θB = (0, 0.1, 1) parameterizations of the OU process (4.1) when only
the mean reversion parameter, θ1, is being estimated, and θ0 and θ2 are being held fixed at their true values.
Empirical size of tests for a nominal size α = 5%.

4.2. Results

In line with the proposition of Gouriéroux and Monfort (1996, pg. 66), the score-based and
distance-based II estimators of a particular type (N, L, A, or M) produce equivalent results in a
just identified setting. The bias and root mean squared error of the just identified estimators is
summarized in Table 3 in Appendix B. Notably, each II estimator of θ1 is biased upward, but in
comparison to the others, the M-type estimators are more accurate with a tighter distribution
around the true value.

Despite their equivalent distributional characteristics, the just identified II estimators don’t
have equal test performance. Table 1 summarizes the rejection rates of likelihood ratio tests of the
hypotheses, HLR1

0 : θ1 = θ10 and HLR
0 : (θ0, θ1, θ2) = (θ00, θ10, θ20), where (θ00, θ10, θ20) denotes

the true value of the parameter vector. In both tests the S1 estimator is much more oversized than
the S2 and D estimators. The large improvement in the performance of the S2 estimator over the
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Figure 1. Plots of LR-type statistics for H0 : θ1 = θ10 as functions of θ10 in the over-identified
OU model with θ0 and θ2 being held fixed at their true values. The left and right panels display
plots based on representative samples of size n = 100, and parameterizations θA = (0, 0.01, 1)
and θB = (0, 0.1, 1), respectively. The horizontal grey line and the vertical red line represent
the 95% χ2(1) critical value and the true value of θ1, respectively. The shape of the objective
function is equivalent to the shape of the LR statistic except for a level shift.

S1 estimator can be attributed to using the simulated binding function instead of the simulated
score for calibration. The shape of the S1 objective function is determined by the simulated
score, g̃S(y(θ), µ̃n), which depends on the variance of the simulated sample. Consequently, the
S1 objective function quickly steepens as θ1 approaches the non-stable region of the parameter
space below θ̂1. As a result, the confidence sets around the S1 estimates, which are upward biased
in the θ1 dimension, frequently exclude the true θ1 parameter value. In contrast, the shape of the
S2 and D objective functions is determined by the simulated binding function, µ̃S(θ), which is

approximately linear around θ̂1, and the roughly symmetric confidence sets around the estimates
contain the true parameter value with higher frequency. As θ1 → 0, the binding function slightly
steepens and the confidence set tightens, which affects the rejection rate of the least-upward-
biased M-type estimators. In joint tests the shrinkage of the confidence sets dominates the bias
reduction of the M-type estimators and leads to higher rejection rates.

Table 2 shows that the S2 estimator retains its superiority over the S1 estimator in an over-
identified setting.3 The S1 estimator is up to ten times more biased than the S2 estimator (N,
L and A-type), which itself exhibits some bias reduction compared to the D estimator. Here,
θ0 and θ2 are being held fixed at the true values, which in general are different from the values
that minimize the just identified objective function for a given set of observations, and θ1 has to
compensate for those restrictions when minimizing the over-identified objective function. This,
in conjunction with the relatively mild penalty when θ1 moves away from the non-stable region
of the parameter space, will cause the over-identified S1 estimator to have a larger upward bias
than the just identified S1 estimator. In contrast, due to the approximate linearity of the binding
function and near symmetry of the S2 and D objective functions, the S2 and D estimators do
not suffer from this excessive bias. However, because of the interaction between the weighting
matrix and the moment conditions, the over-identified M-type estimators lose their bias correcting
properties (see also Altonji and Segal, 1996). Finally, the over-identified S1 estimators have the

3The estimation times listed in Table 4 in Appendix C demonstrate that this improvement can be achieved
without much additional computational cost.
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highest rejection rates in both J and LR tests. The high rejection rate of these tests is caused
by the finite sample bias of the S1 estimators combined with the asymmetry of the S1 objective
functions (see Figure 1).

5. CONCLUSION

We study the asymptotic and finite sample properties of a score-based II estimator that uses the
sample auxiliary score evaluated at the simulated binding function. This estimator is asymptot-
ically equivalent to the original score-based II estimator of Gallant and Tauchen (1996), but in
finite samples behaves much more like the distance-based II estimator of Gouriéroux, Monfort
and Renault (1993). In our Monte Carlo study of a continuous time OU process, the alternative
score-based estimator exhibits greatly improved finite sample properties compared to the origi-
nal one. Our results indicate that estimators operating through the simulated binding function
are more suitable for highly persistent time series models than estimators operating through the
simulated score.
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APPENDIX A: PROOF OF PROPOSITION 3.1

We make the same set of assumptions as Gouriéroux and Monfort (1996, Appendix 4A, pages
85-86). For completeness we list them here:

Assumption A.1. Q̃n ({yt}t=1,...,n, µ) = f̃n (yn, µ) = 1
n−m

n∑
t=m+1

f̃(yt;xt−1, µ)
p→ f̃E(θ, µ) =

EFθ [f̃(yt;xt−1, µ)] uniformly in (θ, µ) as n→∞.

Assumption A.2. f̃E(θ, µ) has a unique maximum with respect to µ : µ(θ) = arg maxµ f̃E(θ, µ).

Assumption A.3. f̃n (yn, µ) and f̃E(θ, µ) are twice continuously differentiable with respect to
µ.

Assumption A.4. The only solution to the asymptotic first order conditions, lim
n→∞

∂f̃n(yn,µ)
∂µ =

∂f̃E(θ,µ)
∂µ = g̃E(θ, µ), is µ(θ) : g̃E(θ, µ) = 0⇒ µ = µ(θ).

Assumption A.5. The equation µ = µ(θ) admits a unique solution in θ.

Assumption A.6. plimn→∞
∂2f̃n(yn,µ(θ))

∂µ∂µ′ = EFθ [H̃(yt;xt−1, µ(θ0))] = Mµ

Assumption A.7.
√
ng̃n(yn, µ(θ0)) =

√
n∂f̃n(yn,µ(θ0))

∂µ

d→ N(0, Ĩ) as n→∞.

In addition:

Assumption A.8. Mµ is full rank. This assumption in conjunction with the implicit function
theorem ensures the first order differentiability of the binding function.

Assumption A.9. EFθ supµ;‖µ−µ(θ0)‖1≤ε

∥∥∥∂2f̃(yt;xt−1,µ)
∂µ∂µ′

∥∥∥
2
< ∞ for some ε > 0 small enough

and suitable norms ‖·‖j , j = 1, 2. This assumption is necessitated by the mean value expansions
below.

For ease of exposition, we only give the proof for θ̂SL2
S (Σ̃n) = θ̂L

S which follows closely the proof
from Gouriéroux and Monfort (1996, Appendix 4A). The results for the other estimators are
similar. For consistency, first note that for fixed S and as n→∞

g̃n(yn, µ(θ))
p→ g̃E(θ0, µ(θ)),

µ̃L
S(θ) = arg max

µ

p

f̃Sn (ySn(θ), µ)
p→ arg max

µ
Sf̃E(θ, µ) = µ(θ).

Then θ̂L
S

p→ arg minθ g̃E(θ0, µ(θ))′Σg̃E(θ0, µ(θ)) which, by A4, is uniquely minimized at θ = θ0.

Hence, θ̂L
S

p→ θ0.
For asymptotic normality, the first order condition of the optimization problem in (3.3) is

∂g̃n(yn, µ̃
L
S(θ̂L

S))′

∂θ
Σ̃ng̃n(yn, µ̃

L
S(θ̂L

S)) = 0. (A.1)
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12 Fuleky and Zivot

Taking a mean value expansion (MVE) of g̃n(yn, µ̃
L
S(θ̂L

S)) around θ0 and plugging it into (A.1)
gives

∂g̃n(yn, µ̃
L
S(θ̂L

S))′

∂θ
Σ̃n

[
g̃n(yn, µ̃

L
S(θ0)) +

∂g̃n(yn, µ̃
L
S(θ̄))

∂µ′
∂µ̃L

S(θ̄))

∂θ′
(θ̂L
S − θ0)

]
= 0 , (A.2)

where θ̄ represents the vector of intermediate values. Using the results

∂g̃n(yn, µ̃
L
S(θ̂L

S))′

∂θ
=
∂µ̃L

S(θ̂L
S))′

∂θ

∂g̃n(yn, µ̃
L
S(θ̂L

S))′

∂µ

p−→ ∂µ(θ0)′

∂θ

∂g̃E(θ0, µ(θ0))′

∂µ
= M ′θ ,

∂g̃n(yn, µ̃
L
S(θ̄))

∂µ′
∂µ̃L

S(θ̄))

∂θ′
p−→ ∂g̃E(θ0, µ(θ0))

∂µ′
∂µ(θ0)

∂θ′
= Mθ,

and re-arranging (A.2) then gives
√
n(θ̂L

S − θ0) = − [M ′θΣMθ]
−1
M ′θΣ

√
ng̃n(yn, µ̃

L
S(θ0)) + op(1). (A.3)

Next, use a MVE of g̃n(yn, µ̃
L
S(θ0)) around µ̃n to give

√
ng̃n(yn, µ̃

L
S(θ0)) =

√
ng̃n(yn, µ̃n) +

∂g̃n(yn, µ̄)

∂µ′
√
n(µ̃L

S(θ0)− µ̃n) (A.4)

=
√
ng̃n(yn, µ̃n) +Mµ

√
n(µ̃L

S(θ0)− µ̃n) + op(1),

and another MVE of g̃n(yn, µ̃n) = 0 around µ(θ0) to give

√
ng̃n(yn, µ̃n) =

√
ng̃n(yn, µ(θ0)) +

∂g̃n(yn, ¯̄µ)

∂µ′
√
n(µ̃n − µ(θ0)) = 0,

so that
√
n(µ̃n − µ(θ0)) = −M−1

µ

√
ng̃n(yn, µ(θ0)) + op(1). (A.5)

In addition, use a MVE of the simulated score g̃Sn(ySn(θ0), µ̃L
S(θ0)) around µ(θ0)

√
ng̃Sn(ySn(θ0), µ̃L

S(θ0)) =
√
ng̃Sn(ySn(θ0), µ(θ0)) +

∂g̃Sn(ySn(θ0), ¯̄µ)

∂µ′
√
n(µ̃L

S(θ0)− µ(θ0)) = 0,

so that

√
n(µ̃L

S(θ0)− µ(θ0)) = −
[
∂g̃Sn(ySn(θ0), ¯̄µ)

∂µ′

]−1√
ng̃Sn(ySn(θ0), µ(θ0)) (A.6)

= −S−1M−1
µ

√
n

S∑
s=1

g̃n(ysn(θ0), µ(θ0)) + op(1),

since g̃Sn(ySn(θ0), µ(θ0)) =
∑S
s=1 g̃n(ysn(θ0), µ(θ0)) and so

∂g̃Sn(ySn(θ0), ¯̄µ)

∂µ′
=

S∑
s=1

∂g̃n(ysn(θ0), ¯̄µ)

∂µ′
p→ S ·Mµ.

By subtracting (A.5) from (A.6) we get

√
n(µ̃L

S(θ0)− µ̃n) = M−1
µ

√
n

[
g̃n(yn, µ(θ0))− S−1

S∑
s=1

g̃n(ysn(θ0), µ(θ0))

]
. (A.7)

Using (A.7) and g̃n(yn, µ̃n) = 0, (A.4) can be rewritten as

√
ng̃n(yn, µ̃

L
S(θ0)) =

√
n

[
g̃n(yn, µ(θ0))− S−1

S∑
s=1

g̃n(ysn(θ0), µ(θ0))

]
, (A.8)
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Because yn and ysn(θ0) (s = 1, . . . , S) are independent it follows that

AsyVar[
√
ng̃n(yn, µ̃

L
S(θ0))] =

AsyVar[
√
ng̃n(yn, µ(θ0))] + S−2

S∑
s=1

AsyVar[
√
ng̃n(yn, µ(θ0))] =

(
1 +

1

S

)
I ,

so that
√
ng̃n(yn, µ̃

L
S(θ0))

d→ N

(
0,

(
1 +

1

S

)
I
)
. (A.9)

Plugging (A.9) into (A.3) gives the desired result.
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14 Fuleky and Zivot

APPENDIX B: ESTIMATION RESULTS FOR JUST IDENTIFIED ESTIMATORS

We summarize the bias and root mean squared error of the just identified estimators in Table 3.
The auxiliary estimates, µ̃, are affected by discretization and finite sample biases, which partially
offset each other. While the former bias dominates for quickly mean-reverting processes, the latter
dominates for highly persistent ones (Ball and Torous, 1996; Fuleky, 2012; Phillips and Yu, 2009).
In a just identified setting, the non-simulation based II estimators produce the same result as
the conditional maximum likelihood (CML) estimator applied to (4.3); hence they fully correct
the discretization bias of the auxiliary estimator. In line with the proposition of Gouriéroux and
Monfort (1996, pg. 66), the score-based and distance-based II estimators of a particular type (L,
A, or M) produce equivalent results in a just identified setting. Furthermore, our results for the
just identified M-type estimator confirm its finite sample bias correcting properties previously
demonstrated by Gouriéroux et al. (2000), Gouriéroux et al. (2010), and Phillips and Yu (2009)
among others.
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Table 3. Just-Identified Estimation of the θ Parameters

Bias and [Root Mean Squared Error] of θ̂0

n µ̃n CML SN1 SN2 DN SL1 SL2 DL SA1 SA2 DA SM2 DM

θA
100

-.0011 -.0014 -.0014 -.0014 -.0014 -.0007 -.0007 -.0007 -.0002 -.0002 -.0002 .0013 .0013
[.2785] [.2928] [.2928] [.2928] [.2928] [.2890] [.2891] [.2891] [.2896] [.2896] [.2896] [.1605] [.1605]

1000
.0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0005 .0004 .0004
[.0499] [.0504] [.0504] [.0504] [.0504] [.0508] [.0508] [.0508] [.0508] [.0508] [.0508] [.0389] [.0389]

θB
100

-.0005 .0000 .0000 .0000 .0000 .0002 .0002 .0002 .0003 .0003 .0003 .0009 .0009
[.1394] [.1543] [.1543] [.1543] [.1543] [.1551] [.1551] [.1551] [.1551] [.1551] [.1551] [.1174] [.1174]

1000
.0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0001 .0001
[.0323] [.0341] [.0341] [.0341] [.0341] [.0348] [.0348] [.0348] [.0348] [.0348] [.0348] [.0336] [.0336]

Bias and [Root Mean Squared Error] of θ̂1

n µ̃n CML SN1 SN2 DN SL1 SL2 DL SA1 SA2 DA SM2 DM

θA
100

.0579 .0613 .0613 .0613 .0613 .0596 .0596 .0596 .0597 .0597 .0597 .0133 .0133
[.0709] [.0762] [.0762] [.0762] [.0762] [.0753] [.0753] [.0753] [.0754] [.0754] [.0754] [.0466] [.0466]

1000
.0049 .0051 .0051 .0051 .0051 .0049 .0049 .0049 .0049 .0049 .0049 .0004 .0004
[.0078] [.0080] [.0080] [.0080] [.0080] [.0080] [.0080] [.0080] [.0080] [.0080] [.0080] [.0066] [.0066]

θB
100

.0370 .0495 .0495 .0495 .0495 .0473 .0473 .0473 .0474 .0474 .0474 .0011 .0011
[.0673] [.0839] [.0839] [.0839] [.0839] [.0828] [.0828] [.0828] [.0829] [.0829] [.0829] [.0702] [.0702]

1000
-.0004 .0051 .0051 .0051 .0051 .0049 .0049 .0049 .0049 .0049 .0049 .0009 .0009
[.0141] [.0165] [.0165] [.0165] [.0165] [.0168] [.0168] [.0168] [.0168] [.0168] [.0168] [.0161] [.0161]

Bias and [Root Mean Squared Error] of θ̂2

n µ̃n CML SN1 SN2 DN SL1 SL2 DL SA1 SA2 DA SM2 DM

θA
100

-.0220 .0129 .0129 .0129 .0129 .0135 .0135 .0135 .0136 .0136 .0136 .0103 .0103
[.0745] [.0753] [.0753] [.0753] [.0753] [.0775] [.0775] [.0775] [.0776] [.0776] [.0776] [.0762] [.0762]

1000
-.0065 .0009 .0009 .0009 .0009 .0013 .0013 .0013 .0013 .0013 .0013 .0005 .0005
[.0235] [.0228] [.0228] [.0228] [.0228] [.0234] [.0234] [.0234] [.0234] [.0234] [.0234] [.0234] [.0234]

θB
100

-.0605 .0105 .0105 .0105 .0105 .0110 .0110 .0110 .0110 .0110 .0110 .0036 .0036
[.0909] [.0783] [.0783] [.0783] [.0783] [.0802] [.0802] [.0802] [.0802] [.0802] [.0802] [.0787] [.0787]

1000
-.0494 .0009 .0009 .0009 .0009 .0012 .0012 .0012 .0012 .0012 .0012 .0005 .0005
[.0539] [.0238] [.0238] [.0238] [.0238] [.0243] [.0243] [.0243] [.0243] [.0243] [.0243] [.0243] [.0243]

Note: Estimation results for the OU process (4.1) with the following two sets of true parameter values: θA =
(0, 0.01, 1) and θB = (0, 0.1, 1). For comparison, we also list the distributional characteristics of the auxiliary
estimator (µ̃n) and the conditional maximum likelihood (CML) estimator applied to (4.3).
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APPENDIX C: COMPUTATIONAL EFFICIENCY OF BINDING FUNCTION BASED
ESTIMATORS

Gallant and Tauchen (2010) criticize distance-based II for its computational inefficiency, because
it potentially involves two nested optimizations with the estimator of the simulated binding
function being embedded within the D estimator. However, if one chooses a simple auxiliary
model that can be estimated by ordinary least squares, as suggested by Calzolari et al. (2001) and
Li (2010), the speed disadvantage of the binding function based estimators disappears. In such a
setting, the binding function in the S2 and D estimators does not involve a nested optimization;
only the analytical expression for the least squares estimator of the auxiliary model is evaluated.
Our results in Table 4 indicate that the speed of the simulation based S2 or D estimator of a
particular type (L or A) is comparable to the speed of the S1 estimator of the same type when
the auxiliary model is estimated by ordinary least squares.

Table 4. Estimation Time

Just Identified Estimation

n SN1 SN2 DN SL1 SL2 DL SA1 SA2 DA SM2 DM

θA
100 0.013 0.015 0.005 0.157 0.161 0.154 0.739 0.492 0.476 1.381 1.311
1000 0.014 0.042 0.005 1.556 1.171 1.132 1.676 1.173 1.146 1.669 1.636

θB
100 0.013 0.014 0.005 0.160 0.161 0.151 0.730 0.486 0.460 0.906 0.904
1000 0.013 0.040 0.005 1.433 1.140 1.097 1.606 1.153 1.100 1.571 1.479

Over-Identified Estimtation

n SN1 SN2 DN SL1 SL2 DL SA1 SA2 DA SM2 DM

θA
100 0.004 0.004 0.002 0.020 0.026 0.021 0.099 0.082 0.071 0.169 0.149
1000 0.004 0.005 0.001 0.202 0.137 0.132 0.236 0.134 0.129 0.225 0.217

θB
100 0.004 0.003 0.001 0.021 0.020 0.017 0.104 0.060 0.054 0.180 0.152
1000 0.004 0.005 0.001 0.181 0.134 0.121 0.218 0.134 0.124 0.194 0.179

Note: Average estimation times (in seconds) for the following two sets of true parameter values of the OU process
(4.1): θA = (0, 0.01, 1) and θB = (0, 0.1, 1). The estimation was carried out on a Mac Mini with a 2GHz Intel
Core i7 processor and 8GB of memory.
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