
Estimating Demand Elasticities in Non-Stationary
Panels: The Case of Hawaii Tourism

Peter Fuleky, Carl S. Bonham, and Qianxue Zhao
University of Hawaii Economic Research Organizaion, and Department of Economics

University of Hawaii, 540 Saunders Hall, 2424 Maile Way, Honolulu, HI 96822.

Abstract

It is natural to turn to the richness of panel data to improve the precision of

estimated tourism demand elasticities. However, the likely presence of common

shocks shared across the underlying macroeconomic variables and across regions

in the panel has so far been neglected in the tourism literature. We deal with the

effects of cross-sectional dependence by applying Pesaran’s (2006) common cor-

related effects estimator, which is consistent under a wide range of conditions and

is relatively simple to implement. We study the extent to which tourist arrivals

from the US Mainland to Hawaii are driven by fundamentals such as real personal

income and travel costs, and we demonstrate that ignoring cross-sectional depen-

dence leads to spurious results.
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1. INTRODUCTION

The past several decades have seen tremendous growth in the literature which

seeks to explain and forecast tourist flows (Song, Dwyer, Li & Cao, 2012; Li, Song

& Witt, 2005). Following a wide variety of empirical methods applied across

different countries and time periods, researchers have produced an even wider

array of estimates for demand elasticities central to marketing, forecasting and

policy work. While the income elasticity of tourism demand is generally expected

to lie between one and two, Crouch (1995, 1996) found that nearly 5% of estimates

from 80 international studies were negative. Analyzing 30 years of international

tourism demand studies, Witt and Witt (1995) found income elasticity estimates

ranging from 0.4 to 6.6 with a median value of 2.4.

Although an “inferior” tourist destination could explain a negative income

elasticity, and an elasticity of less than 1 might be explained by some “necessary”

short-haul international trips, such as those from the US to Canada, the large vari-

ation in estimates calls into question their validity and limits their usefulness to

decision-makers. Estimates of price elasticities fare about the same. Witt and

Witt (1995) found estimates ranging from -0.05 to -1.5, and Crouch (1995, 1996)

found that about 29% of the estimates were positive. Finally, these studies found

transportation price elasticity estimates ranging from 0.11 to -4.3. Crouch (1996)

investigated a number of potential causes of such disparate results, and noted that

model specification played an important role. We suspect that the wide range of

elasticity estimates is due to the limited information and short samples used in

time series models, and the use of panel estimation techniques that do not ade-
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quately deal with important characteristics of panel the data.

There is a rich literature making use of a variety of approaches to explain and

forecast tourist flows. Conventional approaches range from exponential smooth-

ing to vector autoregressive and error correction models using time series data for

a single origin-destination pair (Witt & Witt, 1995; Li, Song & Witt, 2005). Re-

cently some alternative quantitative tools, such as artificial neural networks, fuzzy

time series, and genetic algorithms, have been showing up in the literature. (For

a comprehensive survey of recent developments in tourism demand modeling, see

Song and Li (2008).) Unfortunately, the entire literature on tourism demand is at

the mercy of short time series samples. And the limited data available for esti-

mation has likely contributed to imprecise estimates of demand elasticities. For

example, Bonham, Gangnes and Zhou (2009, p. 541) report an income elasticity

for Hawaii tourism demand from the US that is “implausibly large and estimated

quite imprecisely”. Fortunately, it may be possible to obtain better estimates of

the parameters of interest by taking advantage of the variation in both the tem-

poral and cross-sectional dimensions of panel data sets. This point has not been

lost on the tourism literature, and as econometric tools have advanced, a trend to

exploit the richness of panel data has emerged (Song & Li, 2008; Seetaram & Pe-

tit, 2012). In their review article, Song et al. (2012, p. 1657) suggest that “future

studies should pay more attention to the dynamic version of panel data analysis

and to more advanced estimation methods...”.

While early panel studies ignored problems arising from nonstationarity and

potential cointegration, the tourism literature has now begun to address such is-
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sues. Among others, Seetanah, Durbarry and Ragodoo (2010) estimated a static

model of demand for South African tourism using Fully Modified Ordinary Least

Squares (FMOLS) developed by Pedroni (2001). Using the same technique, Lee

and Chang (2008) investigated the long-run co-movements and causal relation-

ships between tourism development and economic growth. Falk (2010) applied

the dynamic heterogeneous panel technique of Pesaran, Shin and Smith (1999) to

estimate the effects of snow fall on winter tourism in Austria.

One common thread running through this nascent literature is reliance on the

assumption of cross-sectional independence, or that each unit contributes entirely

new information to the dataset. Yet, cross-sectional units are almost certainly

influenced by national or global shocks such as business cycles, technological

innovations, terrorism events, oil crises or national fiscal and monetary policies.

In fact, a large empirical macro and macro-finance literature (see Stock & Wat-

son, 1989, 1998) and results presented here for Hawaii tourism show that cross-

sectional dependence is very common. And, neglecting cross-sectional depen-

dence can lead to substantial bias in conventional panel estimators (Kapetanios,

Pesaran & Yamagata, 2011).

An increasingly common solution to the problem of cross-sectional depen-

dence is to model such dependence using a factor structure. To the best of our

knowledge, this approach has not been used in the tourism literature where cross-

sectional dependence is usually ignored. But at least one study has included ob-

served proxies for unobserved common factors. Nelson, Dickey and Smith (2011)

used oil prices, indicator variables for the effects of the September 11, 2001 terror-
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ist attacks, and a nonlinear time trend capturing the overall slow-down of tourism

demand during recessions. Such proxy variables may be effective in mitigating

the effects of cross-sectional dependence, but their choice involves judgement on

the part of the researcher, and it is unclear whether they are adequate to capture all

sources of common shocks. Alternatively, unobserved dynamic common factors

can be approximated using the methods proposed by Bai, Kao and Ng (2009), Pe-

saran (2006), or Kapetanios et al. (2011). These approaches have the benefit that

they do not require selection of a set of observed proxies.

We estimate tourism demand elasticities from a panel of tourist arrivals to

Hawaii from 48 US states over 19 years using the common correlated effects

(CCE) estimator of Pesaran (2006) and Kapetanios et al. (2011). This technique

offers many advantages. First, the CCE estimator allows us to deal with the pos-

sibility of cross-sectional dependence caused by common factors. Second, it does

not require ex ante information about the unobserved common factors, allows the

factors to contain unit roots and to be correlated with the regressors. Finally,

the CCE estimator offers good finite sample properties (Kapetanios et al., 2011;

Westerlund & Urbain, 2011), and is relatively simple to implement.

The rest of this paper is organized as follows: in Section 2 we outline our

tourism demand model and describe the CCE estimator we use to deal with cross-

sectional dependence in panels; in Section 3 we present panel estimates of demand

elasticities for Hawaii tourism; and Section 4 concludes.
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2. ESTIMATING TOURISM DEMAND ELASTICITIES FROM PANELS

WITH UNOBSERVED COMMON FACTORS

Empirical models of tourism demand borrow heavily from consumer theory

which suggests that the most important factors affecting the tourist’s budget con-

straint are income, the price of tourism services, and the prices of related goods

(substitutes and complements). The demand for aggregate tourist flows from ori-

gin i to destination j can be written as

Di j = f (Yi, Pi, P j, Ps) , (1)

where Di j is a measure of tourism demand in destination j by consumers from

origin i; Yi is the level of income at origin i; Pi is the price of other goods and ser-

vices at origin i; P j is the price of tourism goods and services at destination j; Ps

is the price of tourism products at competing destinations (Bonham et al., 2009).

Assuming homogeneity, demand can be written as a function of real income, and

relative prices

Di j = f
(

Yi

Pi
,

P j

Pi
,

Ps

Pi

)
. (2)

If travel to destination j is assumed to compete with short distance trips near

origin i, the tourism demand model can be simplified to

Di j = f
(

Yi

Pi
,

P j

Pi

)
. (3)
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It is common for researchers to augment income and price variables with deter-

ministic variables such as time trends to capture evolving consumer tastes or sec-

ular growth or decline in an industry; a constant term to account for destination

amenities such as natural assets or other factors that are time invariant; dummies

to account for one-time events such as terrorism, natural disasters, major sport-

ing events, and oil crises; seasonality; or changes in data definitions or collection

methods. These types of events, if otherwise neglected, might lead to bias in the

estimated parameters (Bonham et al., 2009). The method described in this section

deals with such deterministic effects the same way it deals with non-deterministic

common factors such as business cycles. As a result, we do not need to subjec-

tively select deterministic proxies for such events.

Equation (3) can be written in the following log-linear form

yit = αi + β′i xit + uit , i = 1, 2, . . . ,N , t = 1, 2, . . . ,T , (4)

where yit = log(Di j,t), xit =

(
log

(
Yi,t

Pi,t

)
, log

(
P j,t

Pi,t

))′
. The coefficients βi represent

the elasticites of demand with respect to the regressors xit. The dynamics and the

common unobserved factors are modeled in the error terms uit,

uit = γ′i ft + εit , (5)

where ft is an m×1 vector of unobserved common effects, and εit are the individual-

specific (idiosyncratic) errors assumed to be distributed independently of xit and

ft. The εit are, however, allowed to be weakly dependent across i, and serially
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correlated over time. A valuable feature of the model is that the error term, uit,

is allowed to be correlated with the regressors, xit, through the presence of the

factors, ft, in both. Specifically, the k×1 vector xit is assumed to follow the factor

structure

xit = ai + Γ′i ft + vit , (6)

where ai is a k × 1 vector of individual effects, and Γi is a m × k factor load-

ing matrix. The idiosyncratic components vit are distributed independently of the

common effects and across i, but assumed to follow general covariance stationary

processes. Finally, the assumption that εit (in equation 5) is stationary implies that

if ft contains unit root processes then yit, xit, and ft must be cointegrated.

Because the error term, uit, contains common factors that are correlated with

the regressors, failure to account for this correlation will generally produce biased

estimates of the parameters of interest. Pesaran (2006) suggested using cross sec-

tion averages of yit and xit to deal with the effects of the unobserved factors. His

CCE estimator is defined as,

β̂i = (X′i M̄Xi)−1X′i M̄yi , (7)

where Xi = (xi1, xi2, . . . , xiT )′, yi = (yi1, yi2, . . . , yiT )′, and M̄ = IT − H̄(H̄′H̄)−1H̄′

with H̄ = (ι, X̄, ȳ), and ι is a T × 1 vector of ones. X̄ is a T × k matrix of cross-

sectional means of the k regressors, and ȳ is a T × 1 vector of cross-sectional

means of the dependent variable.

The CCE estimator is equivalent to ordinary least squares applied to an auxil-
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iary regression that is augmented with the cross-sectional means of the variables

yit = αi + β′i xit + θ′i h̄t + ηit , i = 1, 2, . . . ,N , t = 1, 2, . . . ,T , (8)

where h̄t = (x̄t, ȳt), and the θi vector contains the individual specific loading

coefficients of the cross-sectional averages. Thus, the CCE estimator of the βi

coefficients captures the effect of the demand determinants after controlling for

co-movement across units. By allowing for heterogeneous loadings, θi, the CCE

estimator is better able to control for common factors than estimators based on

cross-sectional demeaning. This latter approach imposes unit loading coefficients

on the cross-sectional means, which is inappropriate if the impact of global trends

varies across regions.

While Pesaran (2006) derived the CCE estimator for stationary variables and

factors, Kapetanios et al. (2011) proved that the CCE estimators are consistent

regardless of whether the common factors, ft, are stationary or non-stationary. In

addition, they showed that the CCE estimator of the mean of the slope coefficients

is consistent for any number of factors. These two results are important benefits

of the CCE estimator: we do not need to know how many common factors exist,

whether or not the common factors are stationary, or even provide estimates of the

common factors and their loadings. In contrast, Bai et al. (2009) estimate homoge-

nous slope coefficients jointly with common factors using an iterative procedure.

But the precision of that approach substantially depends on prior knowledge of

the number of unobserved factors. Moreover, Kapetanios et al. (2011) and West-
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erlund and Urbain (2011) have shown that the CCE estimators have lower bias

than those of Bai et al. (2009) even if the true number of factors is known.

The objective of this paper is to obtain the best possible estimates for income,

price, and travel cost elasticities of demand for Hawaii tourism. While the slope

coefficients, βi, are allowed to differ across origins, we use the CCE mean group

estimator (CCE-MG) to estimate the overall effect of demand determinants. The

CCE-MG estimator is a simple average of the individual CCE estimators, βi,

β̂CCE−MG =
1
N

N∑
i=1

β̂i , (9)

with variance

V̂ar(β̂CCE−MG) =
1

N(N − 1)

N∑
i=1

(β̂i − β̂CCE−MG)(β̂i − β̂CCE−MG)′ . (10)

This approach is justified under the assumption of a random coefficient model

where, βi = β + wi, and wi ∼ IID(0,Vw), so that the overall demand elasticities

are β = E(βi). When the slope coefficients, βi, are homogeneous, efficiency gains

can be achieved by pooling observations over the cross section units. The CCE

pooled estimator (CCE-P) developed by Pesaran (2006) has the form

β̂CCE−P = (
N∑

i=1

X′i M̄Xi)−1
N∑

i=1

X′i M̄yi . (11)

The CCE estimators are based on orthogonal projections of the variables onto

proxies for common factors. That is, the β̂CCEMG and β̂CCEP coefficient estimates
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are computed from idiosyncratic variation in the panels and are not affected by

global fluctuations, such as business cycles. Consequently, the CCE estimator is

able to isolate the marginal effects of the regressors, and avoid the bias that results

when common factors are ignored.

In the next section we describe our empirical model and report estimation

results.

3. ESTIMATING DEMAND ELASTICITIES FOR HAWAII

The goal of our study is to estimate demand elasticities for tourism from the

US mainland to Hawaii using a panel of tourist arrivals from 48 states spanning

19 years. We approximate tourism demand by tourist arrivals (TOURit). Arrivals

is frequently used in models explaining aggregate tourist flows to a single desti-

nation (inbound modeling) (Li, Song & Witt, 2005; Song & Li, 2008), and high

frequency expenditure data by origin is not available for Hawaii visitors. While

researchers modeling inbound tourist flows sometimes use tourist expenditures,

tourist nights, or other proxies, of the 81 tourism demand studies reviewed by

Song and Li (2008), nearly 70% choose the number of tourist arrivals as the mea-

sure of demand.

Empirical tourism demand studies commonly estimate the elasticities for a

small set of demand determinants such as income at the origin country/region, the

own price of a destination, and possibly substitute prices of alternative destina-

tions (Song et al., 2012). We focus on two types of demand determinants: income

and relative prices. Witt and Witt (1995) recommend using personal income to
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predict holiday travel, and a more general income measure, such as national in-

come, to predict business travel. Because the vast majority (over 70%) of tourists

come to Hawaii for holiday, we use total personal income by state (Yit) as the

measure of income.

Several types of prices appear in the demand specification. The first is the own

price of tourism products. Witt and Witt (1995) suggest that the price measures

should include both, travel costs and the cost of living at the destination. Accord-

ingly, we include two price variables in our model: the price of airfare (PAIRit)

and the price of renting a hotel room (PRMt). The second type of prices used in

tourism demand studies are measures of substitute prices. Because local travel

in the origin region may substitute for travel to the destination, the price level at

the origin is often included as a proxy for substitute prices. We deflate nominal

variables using the consumer price index at the origin (CPIit), so that prices enter

the model in relative terms. The model to be estimated may be written as

log TOURit = αi + β1i log Y∗it + β2i log PAIR∗it + β3i log PRM∗
it + uit , (12)

where Y∗it =
Yit

CPIit
× 100, PAIR∗it =

PAIRit

CPIit
× 100, and PRM∗

it =
PRMt

CPIit
× 100.

3.1. Data

Our sample begins in the first quarter of 1993 and ends in the first quarter of

2012 for a total of 77 periods for each of the 49 states. The sample size is de-

termined by the availability of data on tourist arrivals from the US mainland to

Hawaii. These data are from various reports of the Hawaii Department of Busi-
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ness, Economic Development and Tourism, Hawaii Tourism Authority, the Hawaii

Visitors and Convention Bureau, and the Hawaii Visitors Bureau. Tourist arrivals

data are available monthly for all years except 1995 and 1997, for which we use

interpolated annual values. Data for total personal income is from the Bureau of

Economic Analysis, and airfares to Hawaii are from the DB1B Market database of

the Bureau of Transportation Statistics, which offers a 10% random sample of all

domestic trips each quarter. From the available sample, we calculate the median

airfare for each state and each quarter. We exclude Delaware and the District of

Columbia from our analysis due to the lack of airfare data.

The Hawaii statewide average hotel room rate is from Hospitality Advisors

LLC. The consumer price index is from the US Bureau of Labor Statistics. Be-

cause the CPI is only reported at the metropolitan level, we proxy state consumer

prices using the CPI for metropolitan areas within the state. Where a metropolitan

area CPI is not available, we use the CPI for the region as a proxy for state con-

sumer prices. The CPI data is reported at a variety of frequencies, and we linearly

interpolate the lower frequency series to approximate their values at the highest

(monthly) frequency. We aggregate all monthly series to the quarterly frequency

and seasonally adjust the data using the X-12 ARIMA method where necessary.

(State level personal income is seasonally adjusted by the Bureau of Economic

Analysis.)

The CCE estimator produces consistent estimates of the demand elasticities

in equation (12) regardless of whether the series in the model are stationary or

non-stationary. Nevertheless, before proceeding, we explore the stochastic prop-
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erties of the arrivals, real income, and relative price panels. The variables used in

the model are plotted in Figure 1, where they are standardized so that all cross-

sectional units fit into a single plot. Estimation is carried out without this standard-

ization. Table 1 reports descriptive statistics for each variable along with results

from cross-sectional dependence, structural break, and unit root tests.

[Insert Figure 1 about here]

Franses and Haldrup (1994) show that additive outliers could produce spurious

stationarity, and lead researchers to over-reject the null of a unit-root. To avoid

such issues, we follow the procedure suggested by Perron and Rodrı́guez (2003)

to test for and remove additive outliers in all series. After seasonal adjustment

and outlier removal, we test the variables for cross-sectional dependence using

Pesaran’s (2004) CD test, which is based on the average pairwise correlation of

individual cross-section units. The results in the bottom panel of Table 1 lead us

to reject the null hypothesis of cross-sectional independence for each variable.

Next we test each variable for unit roots. A wide variety of panel unit root tests

is available in the literature (Breitung & Pesaran, 2008). We chose to apply tests

that have the best statistical properties for the hypothesis of interest. For example,

because the CD test rejects the hypothesis of cross-sectional independence for

each variable, the hypothesis of interest is whether the common factors contain

unit roots. We first test the common components in each variable for structural

breaks using the Exp −WFS test of Perron and Yabu (2009). The null hypothesis

of no breaks is rejected for the common components of real income and relative
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airfare. Therefore, we test these series for non-stationarity using the PGLS
T unit

root test of Carrion-i Silvestre, Kim and Perron (2009), which takes into account

the presence of breaks.

For tourist arrivals and the relative room price, we cannot reject the null hy-

pothesis of no breaks. Therefore we test these series for unit roots using Sul’s

(2009) CRMA test and Bai and Ng’s (2004) principal components based PANIC f

test of the common factors. (To distinguish between the PANIC test applied to

common factors versus the one applied to idiosyncratic components, we denote

the former test with an f subscript and the later test with an i subscript.) Results

are presented in the bottom panel of Table 1. We cannot reject the null hypothesis

of a unit root for any of the variables.

[Insert Table 1 about here]

The simulations in Gengenbach et al. (2010) demonstrate that the finite sam-

ple performance of the PANIC test suffers from several issues which do not affect

the CRMA test. The main drawback of Bai and Ng’s (2004) PANIC test is its

reliance on the assumption that the number of common factors and their paths are

known. In practice both need to be estimated, and the estimation error can lead to

misleading inference. The CRMA test avoids these complications by approximat-

ing all common factors in the data via a simple cross-sectional average. For these

reasons we prefer the CRMA test, but we display both tests in Table 1.

15



3.2. Results

To illustrate the impact of cross-sectional dependence on estimates of demand

elasticities, Table 2 compares Pedroni’s (2001) FMOLS estimates, commonly

used in the tourism literature (Seetaram & Petit, 2012), with Pesaran’s (2006)

mean group and pooled common correlated effects (CCE-MG and CCE-P) esti-

mates. The FMOLS income elasticity estimate is small and the room price elas-

ticity has the wrong sign.

[Insert Table 2 about here]

The bottom panel of Table 2 presents diagnostic tests for the FMOLS resid-

uals. The tPP, and tADF are the Pedroni (1999) tests for the null hypothesis of

no-cointegration based on the Phillips and Perron (1988) t-statistic, and the aug-

mented Dickey and Fuller (1979) t-statistic, respectively. Both tests assume cross-

sectional independence, and both reject the null of no cointegration. However,

Pesaran’s (2004) CD test rejects the cross-sectional independence of the FMOLS

residuals, suggesting that the FMOLS estimates are biased due to the presence of

common factors in the residuals (Kao & Chiang, 2000). Moreover, failure to con-

trol for common factors shared across variables, such as national business cycles,

confounds the relationship between the regressors and the dependent variable and

is likely the source of the wrong sign associated with the FMOLS hotel room price

elasticity.

The significant co-movement of the FMOLS residuals is illustrated in Figure 2.

We test the common component in the FMOLS residuals for breaks using Perron
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and Yabu’s (2009) Exp − WFS test. Because we reject the presence of breaks,

we apply Sul’s (2009) CRMA test and Bai and Ng’s (2004) PANIC f test to the

common factors in the residuals. We are unable to reject the null of a unit root

in the FMOLS residuals using either test. The implication is that the FMOLS

estimates are spurious, and ignoring cross-sectional dependence would lead to the

acceptance of the invalid FMOLS results.

[Insert Figure 2 about here]

In addition to the biased FMOLS estimates based on a spurious panel regres-

sion, Table 2 also contains the CCE estimates (top panel) and CCE residual diag-

nostic tests (bottom panel). Kapetanios et al. (2011) showed that the CCE esti-

mator of the mean slope coefficient is consistent for any number of factors, even

if the common factors contain unit roots. However, consistent estimation of the

model parameters requires that the regression residuals be stationary. Because the

CCE regression filters out common factors, the hypothesis of interest is that the

idiosyncratic components of the CCE residuals contain a unit root.

We test for unit roots in the CCE regression residuals using Pesaran’s (2007)

CIPS test, a simple cross-sectional average of cross-sectionally augmented Dickey

and Fuller (1979) t statistics, and Bai and Ng’s (2004) PANICi test for the idiosyn-

cratic components. For both CCE estimators, we reject the null of a unit root in

the residuals ε̂i,t of equation (5) at the 5% level or lower. The rejection of unit

roots in the CCE regression residuals implies that the observed variables and the

unobserved factors are cointegrated (Kapetanios et al., 2011). Note that as long
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as the residuals are stationary, the CCE pooled (CCE-P) and CCE mean-group

(CCE-MG) estimators are both consistent under the random coefficient model as-

sumption (Pesaran & Smith, 1995).

The CCE estimates presented in the top panel of Table 2 are similar to the

elasticities obtained by Nelson et al. (2011), who included in their model observed

and deterministic proxies for common factors, such as oil prices and a non-linear

time trend. The estimated income elasticity of demand for a trip from the US

mainland to Hawaii is slightly greater than unity, implying that travel to Hawaii is

regarded as a luxury good. Still, our result is close to the 0.996 income elasticity

of Nelson et al. (2011), and much lower than the 3.5 estimated by Bonham et al.

(2009) in a VECM that suffered from a short sample period and could not exploit

variation in the cross-sectional dimension.

Our results indicate that demand for Hawaii travel is inelastic with respect to

airfare. If airfare increases by 10%, arrivals to the state are expected to fall by a

little more than 2%. Again, this value is fairly close to -0.211, the airfare elasticity

estimate of Nelson et al. (2011). The estimated hotel room price elasticity suggests

that tourists are more responsive to changes in room rates than to fluctuations

in airfare. Facing a $1000 airline ticket and a daily price of $200 for a double

occupancy room, a couple on a ten-day trip has to split its budget evenly between

airfare and accommodation. Still, a 10% drop in the hotel room rate is expected

to generate 12% higher tourist arrivals, over five times more than a corresponding

drop in airfare.
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This could be explained by a two stage decision making process on the part of

travelers: in the first stage they choose a destination from a range of competing

locations, and in the second stage they pick their flights. The choice in the first

stage may be influenced by offerings of free nights, attraction packages, and the

overall desirability of the destination. Because the choice of flights is relegated to

the second stage, travelers largely focus on minimizing their airfare to the chosen

destination, but do not necessarily switch to competing destinations. As a result,

a shift in median airfare from a particular origin to Hawaii only has a modest

impact on arrivals. The idea of a two-stage decision making process dates back to

the monograph of Strotz (1957), who described the rationale for first deciding how

to allocate a budget among several groups of goods and then making independent

spending decisions within the groups. In a tourism context, multi-stage decision

making has been discussed by Syriopoulos and Sinclair (1993), and Song et al.

(2012). And, a number of studies have relied on this framework when studying

tourism demand. (See Bonham and Gangnes (1996), Nicolau and Más (2005),

and Eugenio-Martin and Campos-Soria (2011).)

The Hawaii hotel room rate is independent of trip origin, and it can be consid-

ered an observed common factor. Because the CCE estimation procedure is based

on an orthogonal projection onto proxies for common factors, the exclusion of the

real room rate only has a minor effect on the results: the CCE income elasticity

and airfare elasticity estimates are similar for the model with and without lodg-

ing prices. Results with the room rate excluded are available in a working paper

version or upon request.
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4. CONCLUSION

The dramatic growth in tourism over the past several decades has led to an ex-

tensive literature which seeks to quantify the effect of income and prices on tourist

flows. Although estimates of demand elasticities are central to marketing, fore-

casting and policy work, the literature on tourism demand has produced a range

of elasticity estimates that are occasionally at odds with economic theory and re-

duce their usefulness in decision making. To improve the precision of estimates,

it is natural to turn to the richness of panel data exhibiting variation in both the

temporal and the cross-sectional dimension. This point has also been realized by

scholars in the tourism literature, and as econometric tools have advanced, a trend

to exploit the greater information content of panel data has emerged. However,

panel estimation using non-stationary data requires careful attention to the likely

presence of common shocks in the underlying macroeconomic variables.

Early panel studies of tourism demand have relied on the assumption of cross-

sectional independence, or that each region contributes entirely new information

to the dataset. Yet, cross-sectional units are generally influenced by national or

global shocks such as business cycles, technological innovations, terrorism events,

oil crises or national fiscal and monetary policies. We demonstrate that neglecting

cross-sectional dependence leads to spurious estimation results. Our contribution

to the literature lies in estimating tourism demand elasticities while accounting for

unobserved non-stationary common factors in the data. We use the CCE estima-

tors of Pesaran (2006) and Kapetanios et al. (2011) to deal with cross-sectional

dependence in panel regressions. This technique offers several advantages over
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competing methods: it does not require ex ante information about the unobserved

common factors, allows them to contain unit roots and to be correlated with the

regressors, allows for heterogeneous factor loadings, exhibits good finite sample

properties, and is relatively simple to implement.

We apply the CCE estimators to US state level quarterly data spanning the

period from the first quarter of 1993 to the first quarter of 2012. We obtain an in-

come elasticity for Hawaii tourism demand that is slightly greater than one, elastic

demand with respect to hotel room prices, and inelastic demand with respect to air-

fare. Our estimates are more plausible than those of Bonham et al. (2009) whose

pure time series model did not benefit from cross-sectional variation, and are in

line with the results of Nelson et al. (2011) who included in their model observed

proxies for common factors, such as oil prices and a non-linear time trend.

However, the selection of observed variables as proxies requires some sub-

jective judgement on the part of the researcher, and in general such proxies may

not successfully capture all sources of unobserved common factors in the panels.

In contrast, our CCE based approach does not require the selection of observ-

able variables to capture the sources of common shocks. Instead, the method uses

cross-sectional averages to directly approximate the unobserved factors in the an-

alyzed series, and it consistently filters out those factors that are actually present

in the panels.

It is important to note that our analysis is subject to some limitations. Driven

primarily by data constraints we limit our analysis to a subset of relative price

effects. For example, we do not consider price competition between Hawaii and
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other long-haul destinations such as Mexico and the Caribbean. Furthermore, our

pooled and mean group estimators produce elasticities of overall tourism demand

from the US Mainland, and do not differentiate among market segments. It is

likely that demand elasticities vary across regional and other types of market seg-

ments, and we intend to explore these issues in future research. Finally, while

tourism demand may fluctuate with the business cycle, we are not analyzing that

relationship. Because the influence of business cycles is filtered out in our estima-

tion approach, the reported estimates represent elasticities, or isolated marginal

effects of the regressors.
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Table 1: Descriptive Statistics and Diagnostic Tests

Descriptive Statistics TOUR Y∗ PAIR∗ PRM∗

Mean 21177 102266.0 371.2 81.1
Max 510013 725758.6 809.6 111.7
Min 641 6430.5 210.5 64.0
S.D. 55666 116523.1 58.0 8.0
S.D.(WG) 9854 20719.9 37.1 7.2
S.D.(BG) 54791 114674.4 44.7 3.6

Variable Diagnostics log TOUR log Y∗ log PAIR∗ log PRM∗

CD 155.35∗ 285.51∗ 193.23∗ 130.12∗

Exp −WFS 1.49 7.24∗ 7.09∗ 1.72
PGLS

T - 25.53 5.95 -
CRMA -1.13 - - -0.03
PANIC f -1.35 - - -10.99
Unit Root? YES YES YES YES
Note: TOUR, Y∗, PAIR∗, and PRM∗ are tourist arrivals, real income, relative airfare, and
relative room price, respectively. SD, S.D.(WG), and S.D.(BG) are the overall, within
group, and between group standard deviation, respectively. Within group standard de-
viation is an indicator of average variability over time within states, and between group
standard deviation is a measure of variability across states. CD is Pesaran’s (2004) cross-
sectional independence test. Exp−WFS is Perron and Yabu’s (2009) structural break test
(H0: no break). PGLS

T is Carrion-i Silvestre et al.’s (2009) unit root test allowing for
a structural break. CRMA is Sul’s (2009) unit root test of the cross-sectional means.
PANIC f is Bai and Ng’s (2004) unit root test of the common factors. The lag lengths
for the unit root tests are determined by the Bayesian Information Criterion. Statistical
significance at the 5% level or lower is denoted by ∗.

28



Table 2: Regression Results

log TOURit = αi +β1i log Y∗it +β2i log PAIR∗it +β3i log PRM∗
it +uit (12)

Coefficient Estimates
β1 β2 β3

FMOLS 0.34∗ -0.37∗ 0.52∗

CCE-MG 1.20∗ -0.23∗ -1.23∗

CCE-P 1.27∗ -0.26∗ -1.20∗

Residual Diagnostics
tPP tADF CD

-6.90∗ -4.65∗ 68.93∗

FMOLS
CRMA PANIC f Exp −WFS

-1.56 -1.47 1.43

CIPS PANICi

CCE-MG -19.25∗ 24.97∗

CCE-P -14.59∗ 24.97∗
Note: See also definitions in Table 1. CIPS is Pesaran’s (2007) unit root test
of the idiosyncratic components. The lag length for the CIPS test was set to
T 1/3 = 4 in each cross-sectional unit. PANICi is Bai and Ng’s (2004) unit
root test of the idiosyncratic components. The lag length for the PANICi test is
determined by the Bayesian Information Criterion. Statistical significance at the
5% level or lower is denoted by ∗.
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Figure 1: Time plots (1993Q1 - 2012Q1) of standardized logarithms of quarterly tourist
arrivals (TOURit), real income (Y∗it), relative airfare (PAIR∗it) and relative room rate
(PRM∗it) by state of origin. The red line in each graph represents the cross-sectional aver-
age of the series.
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Figure 2: Time plots of standardized FMOLS and CCE residuals.
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