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Abstract

When estimating the parameters of a process, researchers can choose the reference unit of

time (unit period) for their study. Frequently, they set the unit period equal to the observa-

tion interval. However, I show that decoupling the unit period from the observation interval

facilitates the comparison of parameter estimates across studies with different data sampling

frequencies. If the unit period is standardized (for example annualized) across these studies,

then the parameters will represent the same attributes of the underlying process, and their in-

terpretation will be independent of the sampling frequency.
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1 Introduction

Since the seminal paper of Sargan (1974) there has been a vast amount of research conducted on the

impact of a declining observation interval on the parameter estimates of continuous time models

(see Bergstrom, 1988, for an early survey). However, in real world applications the observation

interval is usually fixed at the data sampling frequency, for example monthly. When estimating a

time series model, the researcher has to decide on a numerical value representing the length of an

interval between observations. A monthly sampling frequency implies several possible designations

for the observation interval: one twelfth of a year, one third of a quarter, one month, thirty days,

and so on. Thus, the magnitude of the observation interval will depend on the choice of the reference

unit of time, that is, the unit period (a year, a quarter, a month, and a day in the example above).

It is important to recognize that, in contrast to the sampling frequency of most economic data, the

choice of the unit period is at the discretion of the researcher. This paper illustrates the impact of

this choice on model parameters and their estimates.

There are two widely used approaches to choosing the unit period. On the one hand, in discrete

time models it is customary to set the unit period equal to the observation interval (see Hamilton,

1994). On the other hand, in continuous time models the unit period is usually set to a year so that

it matches the reference period of the annualized underlying variable. The observation interval is

then denoted as a fraction of a year, so that 1/12 represents monthly and 1/52 represents weekly

observations (see Hurn et al., 2007; Phillips and Yu, 2009). However, when analyzing discrete

approximations to continuous time processes, the choice of unit period is less clear, and some

researchers follow the former, others the latter approach.

The unit period represents the reference unit of time for the underlying process. Using the same

unit period across different studies facilitates the comparison of the results. A mismatch between

unit periods across studies can occur in various settings: for example, through arbitrary choices

in Monte Carlo experiments, or by using data sets with different sampling frequencies in empirical

studies. For example, the parameters of popular interest rate models are frequently estimated

from weekly or monthly data, but with the time elapsed between observations designated as unity

(see for example Chan et al., 1992; Czellar et al., 2007). While equating the unit period with the

observation interval can make the notation simpler, it can also make the comparison of results
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across studies more complicated. The choice of the unit period affects the interpretation of the

parameters and the bias of their estimates, and this is true whether a study is conducted in discrete

or continuous time.

In Section 2 and 3, I show the impact of the choice of the unit period on the interpretation of

the model parameters and on the bias of parameter estimates, respectively. I use the exact solution

of the Ornstein-Uhlenbeck (OU) process for the illustration of relevant issues. Section 4 concludes.

2 Interpretation of Model Parameters

The interpretation of the model parameters depends on the choice of the unit period. The idea can

be illustrated by an example of weekly sampling from an OU process

Fθ : dy = θ1(θ0 − y)dt+ θ2dW , dW ∼ iid N(0, dt) , (1)

where θ0 is the long run mean, θ1 is the speed of mean reversion, and θ2 is the volatility of the

process. The sample of n weekly observations {yt}t=∆ ...,n∆=T can be generated from the exact

solution of the OU process

Fθ : yt = θ0(1− e−θ1∆) + e−θ1∆yt−∆ + θ2

√
1− e−2θ1∆

2θ1
εt , εt ∼ iid N(0, 1) , (2)

where ∆ denotes the weekly observation interval. First, let the unit period of the OU process

coincide with the observation interval so that the weekly observations are one unit of time apart

(∆=1). Then the θ1 and θ2 parameters represent weekly mean reversion and volatility.

Second, let the unit period of the OU process be a year, and assume that the same data set

was generated by an alternative parameterization denoted with stars

Fθ∗ : dy = θ∗1(θ∗0 − y)dt∗ + θ∗2dW
∗ , dW ∗ ∼ iid N(0, dt∗) , (3)

Fθ∗ : yt∗ = θ∗0(1− e−θ∗1∆∗
) + e−θ

∗
1∆∗

yt∗−∆∗ + θ∗2

√
1− e−2θ∗1∆∗

2θ∗1
εt∗ , εt∗ ∼ iid N(0, 1) , (4)

where ∆∗ = 1/52 denotes the weekly observation interval when the unit period is a year. Now the
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θ∗1 and θ∗2 parameters represent annualized mean reversion and volatility.

Note, I chose different unit periods above, but the data set I generated / observed were the

same in both cases: {yt∗}t∗=∆∗ ...,n∆∗=T ∗ ≡ {yt}t=∆ ...,n∆=T . As long as the data generating process

has a closed form solution, the parameters can be converted between models with different unit

periods. To obtain the same weekly observations in (2) and (4), the following has to hold

yt = yt∗ =⇒ θ∗0 = θ0, θ∗1 = θ1
∆

∆∗ , θ∗2 = θ2

√
∆

∆∗ , (5)

that is, the choice of a yearly unit period implies a 52 times larger mean reversion value in (3)

than does a weekly one in (1). For example, if the annualized mean reversion is θ∗1 = 0.1, then the

weekly mean reversion is θ1 = θ∗1∆∗ ≈ 0.002. However, the long run mean, θ0, and the volatility,

θ2, are not scaled by the same factor, and it can quickly become tedious to compare parameter

estimates based on different unit periods.

The analysis can be extended to data sets sampled at different frequencies from a given process.

Researchers often set the unit period equal to the observation interval thereby making the interpre-

tation of the parameters dependent on the sampling frequency. If the unit period is not the same

across studies, the comparison of parameter estimates in more complicated models that do not

have closed form solutions may become infeasible. However, the interpretation of the parameters

is associated with the unit period as opposed to the sampling frequency. If the unit period is stan-

dardized across studies, then the parameter estimates will be comparable despite the data being

sampled at different frequencies. Thus a judicious choice of the unit period helps to disassociate

the interpretation of the parameters from the sampling frequency and facilitates the comparability

of parameter estimates across studies.

3 Bias of Parameter Estimates

Ball and Torous (1996) and Phillips and Yu (2009) showed that the finite sample estimates of the

mean reversion parameter are severely biased in highly persistent time series. The persistency of

the process is determined by θ1∆ in (2), or θ∗1∆∗ in (4), where θ1∆ = θ∗1∆∗ = α as shown in (5), and

the finite sample bias of its estimate, α̂, is independent of the choice of the unit period. However,
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researchers are usually interested in the bias of the model-parameter estimate, which is

bias(θ̂1) =
1

∆
(α̂− α), bias(θ̂∗1) =

1

∆∗ (α̂− α), bias(θ̂∗1) =
∆

∆∗ bias(θ̂1) , (6)

where (̂·) denotes the estimate. Thus, the choice of the unit period influences the absolute level of

the finite sample bias of the mean reversion estimate: the bias of the annualized parameter, θ̂∗1, is

52 times larger than that of the weekly one, θ̂1. However, the relative finite sample bias of θ̂∗1 is

equal to that of θ̂1 for any choice of the unit period: bias(θ̂∗1)/θ∗1 = bias(θ̂1)/θ1 = (α̂− α)/α.

In practice, the continuous time model (1) is often approximated by a crude Euler discretization

Fµ : yt = µ0µ1∆ + (1− µ1∆)yt−∆ + µ2

√
∆ξt , ξt ∼ iid N(0, 1) , (7)

but here the näıve parameter estimates, µ̂, are asymptotically biased (Lo, 1988). Using (2) one can

show that µ̂ asymptotically converges to µ(θ)

µ0(θ) = θ0, µ1(θ) =
1

∆
(1− e−θ1∆), µ2(θ) = θ2

√
1− e−2θ1∆

2θ1∆
, (8)

and the asymptotic discretization bias is given by the difference µ(θ)− θ . Similarly, µ̂∗ asymptot-

ically converges to µ∗(θ∗)

µ∗0(θ∗) = θ∗0, µ∗1(θ∗) =
1

∆∗ (1− e−θ∗1∆∗
), µ∗2(θ∗) = θ∗2

√
1− e−2θ∗1∆∗

2θ∗1∆∗ , (9)

and using (5), the asymptotic discretization bias of µ̂∗ can be written as

asbias(µ̂∗0) = µ0(θ)−θ0, asbias(µ̂∗1) =
∆

∆∗ (µ1(θ)−θ1), asbias(µ̂∗2) =

√
∆

∆∗ (µ2(θ)−θ2) . (10)

Thus, the choice of the unit period influences the absolute level of the asymptotic discretization bias

of the näıve estimates. For example, the asymptotic bias of the annualized mean reversion, µ̂∗1, is

52 times larger than that of the weekly one, µ̂1. (However, note that the scaling factor is not equal

across all parameters.) Nevertheless, as in the case of finite sample bias, the relative asymptotic

bias of µ̂∗ is equal to that of µ̂ for any choice of the unit period: asbias(µ̂∗)/θ∗ = asbias(µ̂)/θ.
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Figure 1 displays the impact of the choice of different unit periods on the bias of the discrete mean

reversion estimates µ̂1(θ1) for different θ1 values: the choice of the unit period only has a scaling

effect and the relative bias is the same for both unit period choices.

Therefore, assuming a given underlying process, it might be meaningful to compare the relative

bias but not the absolute bias of parameter estimates across studies with different unit periods.

Different unit periods usually arise from setting them equal to the observation interval in data sets

with different sampling frequencies. But because the unit period can be chosen independently of

the sampling frequency, absolute comparability of parameter estimates can be achieved by choosing

the same unit period across studies.

4 Conclusion

I use a simple OU process to illustrate the impact of the choice of the unit period on parameter

estimates. The choice of the unit period determines the notation for the length of the observation

interval, and it affects the interpretation and absolute bias of parameter estimates. If the unit period

is set equal to the observation interval, then parameter estimates will not necessarily be comparable

across studies with different data sampling frequencies. However, if the unit period is decoupled

from the observation interval, and is set equal across these studies, then parameters will represent

the same attributes of the underlying process, and their interpretation will be independent of the

sampling frequency. A common unit period serves as a reference unit across studies: it affords

simple comparison of estimation results including conclusions about the effect of sample size or

sampling frequency on the absolute bias of parameter estimates.
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Figure 1: Impact of unit period choice on parameter estimates and bias.

Note: The left and right diagrams are based on the same weekly pseudo-data gener-
ated from the OU process (2) with the range of θ1 and θ∗1 as shown on the horizontal
axis, and the remaining parameters held constant at θ0 = 0.1, θ2 = 0.1/

√
52, and

θ∗0 = 0.1, θ∗2 = 0.1. The difference between the left and right diagrams is the choice
of the unit period - left: ∆ = 1 (parameter values in weekly terms), right: ∆ = 1/52
(parameter values in annual terms). The sample size is set to 1000 observations. The
estimated model is given by (7). The red dashed 45◦ line represents the theoretical
unbiased estimator, and the blue solid line indicates the mean of 1000 least squares
estimates of the mean reversion parameter µ1 as a function of θ1. The bottom dia-
grams zoom in on mean reversion values close to 0, the range of realistic parameter
values for interest rate models and where the finite sample bias is the strongest. As
apparent from the diagrams, the choice of the unit period only has a scaling effect
and the relative bias is the same for both unit period choices. (The top diagrams also
illustrate that the positive finite sample bias dominates close to 0, but at θ1 = 0.1
or θ∗1 = 5.2 the negative discretization bias takes over.)
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