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Abstract. Many popular tourist destinations are on small islands whose resources are in limited

supply, and the effects of climate change and burgeoning tourism tend to worsen the outlook. In

this study, we identify the relationship between tourism and water use on the Hawaiian island

of O‘ahu. Hawai‘i closed almost entirely to tourism during the COVID-19 pandemic, which pro-

vides a unique natural experiment to study the relationship between tourism and water use. We

estimate a 1% decline in the number of tourists was associated with a 0.4% to 0.65% lower water

use in the hotel sector. However, no such relationship was found in the Airbnb market, which we

hypothesize is due to work-from-home arrangements in the residential sector during the pandemic.
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Highlights

• The tourism shutdown on O‘ahu during COVID-19 provided a unique natural experiment

• A variety of data sources and methods were used to study the effect on water use

• Water consumption in hotels dropped significantly, as expected

• No measurable change in water use was detected in residential areas with Airbnbs
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1 Introduction

Water security is often understood as the capacity of a population to safeguard access to water

resources in sufficient quantity and quality to sustain livelihoods and socio-economic development

(United Nations Educational and Organization 2012). Globally, more than 600 million people

do not have access to clean drinking water and a staggering 2.4 billion lack adequate sanitation

(Economist Intelligence Unit 2017). Maintaining adequate freshwater supplies in Pacific islands is

of particular concern as sea-level rise, changing temperature, and shifting rainfall patterns stress

fragile water resources (Mcleod et al. 2019; Izuka and Keener 2013). As acknowledged at the 2021

United Nations Climate Change Conference, water is the primary medium through which human-

ity will feel the effects of climate change (United Nations Climate Change Conference COP26

2021). The importance of water management is accentuated when there is near complete reliance

on groundwater as in Hawai‘i, where 99% of drinking and half of all water use is sourced from

aquifers (Izuka, Engott, et al. 2018; Holding et al. 2016; Tribble 2008). While the situation has

not yet escalated to a dire stage on the island of O‘ahu, which accommodates Honolulu, the capi-

tal of and largest city in Hawai‘i, there is growing evidence that available freshwater resources on

the island have been diminishing over time (Bassiouni and Oki 2013; Bremer et al. 2021).

In most countries, the tourism sector comprises less than 5% of total domestic water use

(Gössling 2015), but hotels and resorts tend to be intensive water users (Environmental Protec-

tion Agency 2012). In 2019, the number of tourists was about 17% and 12% of the resident pop-

ulation in the state of Hawai‘i and the island of O‘ahu, respectively, so it is important to under-

stand the impact of the tourism industry on the precariously-balanced water supply. This is espe-

cially true given the potential climate change effects on water availability and further expansion

of the tourism industry. Although tourism only increases global water consumption by less than

1% and this is not forecasted to increase significantly in the future, an increase in tourism may

strain water resources in regions of the world where tourism is highly concentrated (Gössling et

al. 2012). Regions like Nicaragua (LaVanchy 2017) and islands such as Bali (Cole 2012; Sudiajeng

et al. 2017) and Zanzibar (Gössling 2001) whose economies rely heavily on tourism already show

evidence of unsustainable groundwater use. Further, in many of these regions where the tourism

sector out-competes residents for water resources, some of the negative effects may not be equally

distributed, with lower-income residents (Stonich 1998) and women (Cole 2017) potentially expe-

riencing greater adverse outcomes.

In the case of Bali, research into the relationship between tourism and water use has been in-

strumental in raising awareness and shaping public policy (Cole, Wardana, and Dharmiasih 2021).

While tourists’ perceptions of their environmental impact have been shown to have a measurable

effect on their actual environmental impact (Hillery et al. 2001), additional experimental results

suggest that active engagement with tourists can have a greater effect on water sustainability
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than passive engagement (León and Araña 2020).

This concentration of tourism and the effects it may have on water resources is emerging

as a concern in Hawai‘i, and on O‘ahu in particular, where the number of tourists visiting the

state/island grew by 50% between 2009 and 2019 (see Fuleky, Zhao, and Bonham 2014; Hirashima

et al. 2017, for recent estimates of tourism demand in Hawaii). However, unlike the developing

economies of the aforementioned locations, O‘ahu is a tourist destination with a highly-developed

economy where the strain on water resources is a concern even without consideration of tourism-

specific use. As a case in point, the recent contamination of Honolulu’s primary drinking water

source by a fuel leak could result in a moratorium on new construction, closure of swimming

pools, and limiting irrigation of city parks (Bonham et al. 2022). Residential water consumption

on the island accounts for about 55% while hotels and resorts account for about 5% of total mu-

nicipal water use but, in per-capita terms, tourists use approximately the same amount of water

as residents. Thus, our study serves to be one of the first to examine tourism and water use on a

dense, urban island. We aim to answer two main research questions with our work:

1. What is the net effect of tourism on water resources on O‘ahu and did the shutdown of

tourism produce noticeable changes in water consumption, and

2. What is the mechanism by which these changes in consumption operate? How much of the

change can be linked to reduced hotel occupancy, reduced Airbnb occupancy, and other

factors such as reduced tourism-related business patronage?

The majority of previous literature on the topic of tourism and water use has largely focused

on direct water use by tourist infrastructure such as hotels, swimming pools, spas, golf courses

and water parks (Charara et al. 2011; Gössling 2001; Hof and Schmitt 2011; Rico-Amoros, Olcina-

Cantos, and Saurí 2009; Deyà-Tortella and Tirado 2011). We also start with a direct approach,

examining how water consumption is related to tourism infrastructure utilization. We first ana-

lyze the relationship between tourism levels and the associated changes in hotel water consump-

tion, while controlling for other variables like temperature and rainfall that are expected to affect

water use decisions. We also examine the connection of water use to transient vacation rentals,

specifically, we analyze water use in residential neighborhoods as a function of Airbnb reserva-

tions. Finally, we use granular data representing daily foot traffic at tourism-related businesses

such as restaurants and other so-called “points of interest” in high traffic tourist areas to examine

indirect water use outside of hotels and accommodation, a component of tourism-related water

consumption that has received considerably less attention in the existing literature. The underly-

ing data comes from SafeGraph1, which tracks the locations of cellular devices to determine where

and how long residents and tourists stay at various locations. Throughout the paper, we refer

1https://www.safegraph.com
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to SafeGraph tracking data as foot traffic to differentiate it from tourist counts. We hope these

results may be used in other studies examining tourism projections to understand the effect of

future trends on water use.

Our main source of identification of the tourism/water consumption relationship is the large-

scale statewide shutdown of tourism due to the COVID-19 pandemic, which has had a signifi-

cant impact on the global tourism industry through its effects on travel restrictions, shutdowns,

and tourist sentiment (Liu, Kim, and O’Connell 2021; He et al. 2022; Williams et al. 2022; Xiang

et al. 2022). This event provides a unique natural experiment to study the relationship between

tourism and water use on O‘ahu, and adds to the growing body of research investigating the ef-

fects of COVID-19 on tourism (Yang, Zhang, and Rickly 2021) and literature using experiments

in hospitality and tourism (Viglia and Dolnicar 2020). Despite the opportunity, to date a very

limited number of studies took advantage of the chance to employ a natural experiment method-

ology presented by COVID-19 (Yang, Zhang, and Rickly 2021). Although environmental indica-

tors appear to have improved in some areas during the pandemic, due to observed improvements

in water and air quality and corresponding improvements in linked ecosystems, much COVID-

19 research related to environmental outcomes has been advocacy-driven and more speculative

than empirical (Viglia and Dolnicar 2020). In Hawai‘i, recreational travel was put on hold due to

this exogenous shock, with hotel and resort occupancy dropping to essentially zero for about six

months. As seen in Figure 1, the large and sudden change in the number of tourists on O‘ahu co-

incides with a similarly significant change in the consumption of water in these locations. We also

examine how the pandemic affected water consumption at other locations, such as restaurants

and residences. These results are in part likely influenced by the prevalence of transient vacation

rentals such as Airbnb in residential locations, as well as a significant shift to work-from-home ar-

rangements in many sectors. Using parcel-level water consumption data at the monthly frequency,

we aim to quantify the pattern of water consumption across these various sectors on O‘ahu.

2 Data

Our analysis relied on several data sets with different spatial granularity and temporal aggrega-

tion. Monthly water use data were obtained from the Honolulu Board of Water Supply for all

properties on O‘ahu for the period from February 2013 to October 2020. These data include in-

formation about billing start and end dates, and the quantity of water consumed by the property.

It also provides the classification of the properties, such as commercial, hotel, single family home,

high-density residential, industrial, or government. Individual properties in the data are identified

by their tax map key. These tax map keys are used for identification of individual properties for

all tax and other local government matters, and are used here for data matching purposes. For
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Figure 1: Aggregate (island-wide) monthly time series spanning the February 2013 to Oc-
tober 2020 period. Aggregate monthly water use for all other types of parcels in the fourth
subplot includes offices, commercial and industrial consumers.
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consistency, we refer henceforth to tax map keys and individual properties as parcels.

We obtained the monthly aggregate (island-wide) hotel occupancy data, the percent of avail-

able rooms occupied across all hotels on the island, for the sample period from February 2013 to

October 2020 from the Hawai‘i Tourism Authority (2021). Although the supply of hotel rooms

only fluctuated by approximately 1% over the last 5 years, some hotels effectively shut down

during the COVID-19 pandemic. To make occupancy during this period comparable to the pre-

pandemic period, we used the 2019 room supply to calculate occupancy rates for each month be-

ginning April 2020 (Hawai‘i Tourism Authority 2020, p. 6).

Because seasonal weather patterns are correlated with both water use and tourist counts

(see, for example, Ouyang et al. 2014; Ghimire et al. 2016), it is important to control for weather

in our models. Average monthly temperature and monthly rainfall were obtained from the Na-

tional Oceanic and Atmospheric Administration database for the Honolulu International Airport

(National Oceanic and Atmospheric Administration 2021).

Nightly Airbnb reservation status for all units on O‘ahu from October 20182 to October 2020

is provided by Inside Airbnb (Inside Airbnb 2021). The monthly snapshots contain the reserva-

tion status for each night during the subsequent month. Since a reservation can be made or can-

celed between the time the data are scraped and the night of the reservation, the true occupancy

status is not known with full certainty. This measurement error is assumed to be random. Be-

cause most Airbnb listings provide only an estimated location and not the exact location of the

rental, data were aggregated to a grid as shown in Figure 2. Each grid cell measures one square

kilometer, and we calculated each cell’s aggregate monthly water use, expected Airbnb occupancy,

number of residential units (with and without Airbnbs), and Airbnb density using the data above.

These grid cells then become the observational units in one of the models discussed below. Figure

2 shows an aggregated time series for the data used in our hotel and Airbnb analyses. The signif-

icant drop in hotel water use in the first quarter of 2020 coincides with the decrease in tourism

due to the COVID-19 pandemic but residential units see an overall increase in water use, which

we hypothesize is likely due to the significant increase in work-from-home arrangements for resi-

dents of the island.

Overall, in our sample period, there are about 245,000 unique residential units on O‘ahu,

of which less than 10,000, or 4%, were listed as unique transient vacation rental units at least

once during the same period. As we discuss in the following sections, because the concentration

of Airbnb units relative to total residential units can be quite low in many grid cells, we also per-

form robustness checks that limit the data to those cells with high concentrations of Airbnbs.

Finally, we use data compiled by SafeGraph to track foot traffic at various points of interest

on O‘ahu. These data rely on mobile phone GPS tracking to provide information on visited loca-

2As we will discuss in detail in Section 3, we supplement this data with predicted Airbnb reservation
status before October 2018 in order to make use of the full time series of our other datasets.
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Figure 2: 1km×1km grid over all residential and hotel parcels on O‘ahu. Because Airbnb
locations are not exact, data were aggregated to a grid for analysis. SFDs are single family
dwellings, and low- and high-rise are residential apartment and condominium units.
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tions, dates of visits, and duration of stay. Points of interest include hotels, but also other pub-

lic spaces like parks, restaurants, and retail outlets. Because not all patrons at a given location

may have mobile phones, or location tracking services may otherwise be unavailable, foot traffic

information can only be used to estimate the relative levels of patrons at the island’s points of in-

terest. We assume that the fraction of patrons who have a tracked mobile phone stays relatively

constant over time, so that a percent change in the number of tracked visits to a point of interest

approximates the true percent change in the number of overall visits to that location. Also note

that the patrons can be either residents or tourists, so some GPS signals would still be observed

even with a complete loss of tourism.

3 Empirical strategy

Next we describe several modeling and estimation approaches, tailored to the data sets in our

analysis. The models range from the aggregate to the fairly granular, depending on the spatial

resolution of the particular variables used. The methods, in conjunction with the data, help us

analyze water consumption from several perspectives.

3.1 Hotel water use and aggregate tourism measures

Our first model uses a time series regression of monthly hotel water use on monthly island-level

predictors, estimated individually for each hotel. In other words, each hotel’s water consumption

is modeled as a hotel-specific fixed amount of water consumption, plus hotel specific sensitivity to

island-wide seasonal and tourism components. The seasonal components include temperature and

precipitation, and the tourism component includes the hotel occupancy on O‘ahu. Specifically, we

are analyzing the following random coefficient model

log (Waterit) = α0i + α1i log(Occupt) + α2iTempt + α3i log(Raint) + uit, for each hotel i. (1)

The random coefficient model framework (see for example Hsiao and Pesaran 2008) allows us

to consider series that do not have cross-sectional variation, such as island-wide indicators of

tourism and seasonality. After running a time series regression for each hotel i, we collect the

estimated coefficients to obtain their distribution across all hotels. The aggregate effect and the

associated uncertainty can be obtained via the mean and variance of the individual coefficient

estimates. In the equations above, Waterit is the water use in hotel i in month t, α0i is a hotel-

specific fixed amount of water consumption, Occupt is the aggregate occupancy rate of hotels

on O‘ahu in month t, Tempt is the average temperature in degrees Celsius on O‘ahu in month

t, Raint is the aggregate monthly rainfall in millimeters on O‘ahu in month t, and uit is the er-
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ror term. Note also that we use the notation log(·) to denote the natural log, which allows us to

interpret coefficient estimates approximately as percent changes or elasticities. We maintain this

notation throughout. Although the occupancy rate is recorded as a percentage, without the log-

transformation of this variable the estimated a1i parameter in Equation 1 would not be compa-

rable to other models. For example, when the occupancy rate is at 50%, a one percentage point

increase or decrease in the original units to 51% or 49%, respectively, is actually a two percent

change (0.01/0.50 = 0.02). The model in Equation 1 estimates the relationship between indi-

vidual hotel water use and aggregate tourism activity, while controlling for island-wide weather3.

Next we turn to models utilizing more granular explanatory variables.

3.2 Point of interest water use and SafeGraph data

To exploit the full panel of water consumption that contains hotels but also includes other com-

mercial locations like malls and restaurants, we use foot traffic data from SafeGraph. While wa-

ter consumption is available at the parcel level, SafeGraph data can be even more granular when

there are multiple individual points of interest within a parcel. For example a building may con-

tain several restaurants, but we only have water billing data for the whole building. To maintain

compatibility with water consumption, we use the number of patrons aggregated to the parcel

level. We use the term “patron” instead of “tourist” since we cannot differentiate between traffic

by tourists and residents at various points of interest. Just like in Section 3.1, we use the random

coefficient framework to estimate the relationship between water consumption and total patrons.

First, for each parcel i we run the time series regression

log (Waterit) = β0i + β1i log (Patronit) + β2iTempt + β3i log(Raint) + uit, for each parcel i

(2)

where Waterit is the water use for parcel i in month t, β0i is a parcel-specific fixed amount of wa-

ter consumption, Patronit is the patron count (i.e., the number of devices tracked by SafeGraph),

and uit is the error term. Once we have the distribution of coefficient estimates from the individ-

ual time series regressions, we can calculate their mean and variance to estimate aggregate effects.

The random coefficient model allows us to keep the cross-sectionally invariant temperature and

rainfall in the model.

For comparison with the random coefficient model, we also run a two-way fixed effects re-

3As noted in the data section, we only have temperature and precipitation readings for Honolulu Inter-
national Airport which is located in a central location of the island, only 5 miles (8 km) from Waikiki, the
center for tourism on O‘ahu. The overwhelming majority of hotels typically experience similar rainfall and
temperature, hence there is no need for parcel specific weather variables in our models.
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gression with the full panel data

log(Waterit) = β0i + β1 log(Patronit) +Montht + uit. (3)

In this model, β0i is the parcel-specific fixed water consumption and Patronit is the number of

patrons at parcel i in month t. In contrast to Equation (2), β1 is forced to take on the same value

across all parcels. The time series regressions in Equation (2) allowed us to control for tempera-

ture and rainfall — which did not vary spatially in our data — via the location specific β2i and

β3i coefficients. Here we replace the island-level temperature and rainfall controls with a month

fixed effect, Montht, to avoid collinearity, since we use the full panel data set all at once.

A similar model can be used to study the relationship between water use and foot traffic dif-

ferentiated by parcel type. For example, the impact of patrons on water use in hotels may differ

from that in restaurants. The water billing data contains the type of the parcel, which we include

in a two-way fixed effects regression with type-specific patron impacts

log (Waterit) = β0i +
J∑

j=1

βj log(Patronit)× Typej +Montht + uit. (4)

Again, β0i is the parcel-specific fixed water consumption, Montht, is a month fixed effect, Patronit
denotes the number of patrons to parcel i in month t, and Typej=1...J are indicator variables

assigning the parcel to one of J type categories: city government, commercial, city park, hotel,

mixed use, religion, and other miscellaneous types4.

3.3 Airbnb occupancy empirical strategy

For the Airbnb analysis using our gridded data described above, we again use a two-way fixed

effects regression. The empirical model estimating the relationship between residential water use

and Airbnb reservations is thus

log (GridWaterit) = γ0i + γ1i log (BnbResit) +montht + gridi + uit, for each grid cell i, (5)

where GridWaterit is the quantity of water consumed by the residential units in grid-cell i in

month t, BnbResit is the last known Airbnb reservation status in grid-cell i in month t, montht
and gridi are monthly and grid fixed effects, respectively, used to control for spatial and temporal

effects, and uit is the error term. We do not have Airbnb occupancy data before October 2018, so

4These include all types of residential parcels, industrial parcels, and other types we group together
in the analysis that are less relevant when studying the effect of human pressure (approximated by foot
traffic) on water use.
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Table 1: Summary table describing which datasets are used in each analysis. “Hotel” refers
to models using aggregate tourist measures, “POI” refers to the parcel-level analysis using
the panel of billing data and SafeGraph point of interest foot traffic data, and “Airbnb”
refers to the grid cell-level analysis of Airbnb reservations.

Model
Data

Water use Aggregate tourism Temperature and rainfall Airbnb reservations SafeGraph foot traffic

Hotel X X X
POI X X X

Airbnb X X X

we impute the missing data with predicted values from the model

BnbResit = δ0i + δ1Tourt + vit, for each grid cell i. (6)

That is, using available data for the period from October 2018 to October 2020, we estimate a

regression of monthly grid-level Airbnb reservations on aggregate monthly tourist counts, with

grid cell fixed effects δ0i and error term vit. Using the estimated coefficients in Equation (6) and

actual tourist numbers before October 2018, we impute grid-level Airbnb reservations before Oc-

tober 2018, which we denote B̂nbResit, and Equation (5) becomes

log (GridWaterit) = γ0i + γ1i log
(
B̂nbResit

)
+montht + gridi + wit, for each grid cell i, (7)

where wit is the new error term. Many grid cells have low numbers of Airbnb units relative to the

number of residential units, which can obscure the effect of Airbnb occupancy. Therefore we run

this model with several Airbnb concentration cutoffs as a robustness check. Table 1 summarizes

which datasets are used in which analyses.

4 Results

In the following subsections we discuss the results obtained in each of the models described above.

4.1 Hotel water use and aggregate tourism results

We first present the results of Equation (1), where we regress water use on hotel occupancy with

controls for weather, in Table 2. Here, a 1% lower hotel occupancy is associated with a 0.46%

lower hotel water use, on average (since the main identification channel is the COVID-19-related

shutdown, we interpret the coefficients with a weakening economic environment in mind).
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Table 2: Regression results corresponding to Equation (1). For each of the 74 hotels in
our data, a time series of monthly water use is regressed onto a time series of aggregate
tourism measures, with controls for aggregate monthly weather. The mean coefficient esti-
mates across all regressions are reported, along with their corresponding standard errors in
parentheses.

Dependent variable:

Log mean water use (L/day)

(1)

Log hotel occupancy 0.46∗∗∗

(0.058)

Avg. temp. (C) 2.82e-3
(0.019)

Log total precip. (mm) 2.35e-3
(0.025)

Constant 9.06∗∗∗

(1.64)

Number of hotels 74
Number of time periods (months) 93
Mean R2 0.519
Mean Adj. R2 0.502
Mean Resid. Std. Error (df = 89) 0.317

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3: Random coefficient model results corresponding to Equation (2). For each parcel,
a time series of water use was regressed on the associated aggregate number of patrons at
the parcel identified by SafeGraph cellular device tracking. Time series of temperature and
rainfall were included as controls. The table presents the aggregated results of the random
coefficient model: the means of the individual coefficients are reported, along with their
standard errors in parentheses.

Dependent variable:

Log mean water use (L/day)

(1)

Log patron count 0.16∗∗∗

(0.013)

Avg. temp. (C) 0.017∗∗∗

(2.89e-3)

Log total precip. (mm) −0.016∗∗∗

(1.49e-3)

Constant 8.78∗∗∗

(0.10)

Number of parcels 5060
Number of time periods (months) 31
Mean R2 0.262
Mean Adj. R2 0.157
Mean Resid. Std. Error (df = 27) 0.429

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

4.2 Point of interest water use and SafeGraph results

Table 3 presents the results corresponding to Equation (2). As noted in Section 3, the results are

the average estimates in a random coefficient model, where the monthly water use of each parcel

was regressed onto the monthly patron count at that parcel with controls for monthly weather.

The average coefficient of 0.16 suggests that a 1% lower patron count at a parcel is associated

with an expected 0.16% lower water use at that parcel. The standard error of this mean coeffi-

cient is about 0.01.

With the random coefficient model, we obtained one regression result for each parcel, which

allowed the coefficient of interest, log patron count, to vary for each parcel. To check whether the

aggregated mean of these coefficients presented in Table 3 is robust to the estimation method, we
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Table 4: Regression of parcel water use onto SafeGraph foot traffic using the full panel
data. In column 2, foot traffic is interacted with parcel type to compare the sensitivity of
select location types to foot traffic. The ‘Other’ category includes state government, indus-
trial, golf courses, all residential parcels, irrigation, agriculture, federal government, and
fire hydrants. Parcel and month fixed effects are included. Errors are clustered by parcel
and month.

Dependent variable:

Log mean aggregate water use (L/day)

(1) (2)

Log patron count 0.191∗∗∗

(0.027)

Log patron count × City gov’t 0.139∗∗

(0.053)

Log patron count × Commercial 0.273∗∗∗

(0.036)

Log patron count × City park 0.160∗∗

(0.065)

Log patron count × Hotel 0.356∗∗∗

(0.035)

Log patron count × Mixed use 0.133∗∗∗

(0.042)

Log patron count × Religion 0.204∗∗∗

(0.055)

Log patron count × Other 0.084∗∗∗

(0.019)

Month FE Yes Yes
Parcel FE Yes Yes
Observations 145,182 145,182
R2 0.940 0.940
Adjusted R2 0.938 0.938
Residual Std. Error 0.564 (df = 140133) 0.562 (df = 140127)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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run a panel regression with the same data using Equation (3). Because temperature and rainfall

vary only by time, not spatially, we cannot use them in a standard panel regression, and we re-

placed them with month fixed effects. Unlike the random coefficient model where each parcel has

its own coefficients, the panel model forces the coefficient to take the same value for all parcels.

The results of this robustness check are given in column 1 of Table 4. The coefficient on log pa-

tron count, 0.191, is similar to the coefficient in Table 3, confirming there is little difference be-

tween aggregating coefficients from the random coefficient model and the single coefficient of the

panel model.

The panel regression also enables us to examine the differences in the relationship between

water use and patron count across location types. In column 1 of Table 4, the coefficient 0.19 is

much smaller than the coefficient estimates we found with our aggregate model for hotels in Sec-

tion 4.1. One reason for this result is that the data used for the present model includes a wide

variety of locations. In addition to hotels, it includes public parks and other government build-

ings, retailers, restaurants, etc. Reporting only a single coefficient for all location types may hide

a wide range of coefficients whose magnitudes may depend on the type of locations the parcels

represent. In column 2 of Table 4, we extend the panel model to include interactions with parcel

type using Equation (4). Note that this model includes all parcel types but, for table size pur-

poses, only select parcel types are reported. The ‘Other’ category includes those types that were

not reported separately: state government, industrial, golf courses, all residential parcels, irriga-

tion, agriculture, federal government, and fire hydrants.

The parcel type interactions reveal the variation in the coefficient we expect; specifically,

for hotels, a 1% lower patron count is associated with a 0.36% lower water use, which is a much

larger difference than the 0.19% found when all location types were pooled. Note, however, that

this coefficient is still smaller than the estimate we found in our regression using hotel occupancy

(0.46%). One reason for this may be that some foot traffic in and around hotels is not attributable

to hotel guests and therefore does not result in large amounts of water use. For example, many

hotels on the beach may experience foot traffic that does not result in the use of hotel facilities.

This would lead to a lower coefficient than we would expect to see if we measured only hotel

guests. Commercial locations have a significant coefficient likely because they often contain busi-

nesses whose water use is highly dependent on the number of patrons, like restaurants. The accu-

racy of estimation is better when there is clear separation of a parcel from its surroundings and

from unrelated foot traffic, which is likely the case for religious institutions. In contrast, the foot

traffic signal in city parks and at mixed use parcels is likely quite noisy. For parcels containing

multiple point of interest locations like malls, we cannot further disaggregate the analysis since

we only have water use at the parcel level rather than the point of interest level. Finally, recall

that the data only track patrons with cell phone signals, and we assume the proportion of those

with and without cell phones remains relatively stable throughout the study period. If, however,
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this proportion changes, the true foot traffic may differ from the observed foot traffic and bias our

results. Still, we believe we can glean useful information about how water use at various types of

businesses may be associated with the number of patrons they receive.

4.3 Airbnb occupancy results

The results of the Airbnb reservation analysis in Equation (7) are reported in Table 5. Note that

each column is a separate model, where we limit the data to grid cells with higher and higher

concentrations of Airbnb units. Airbnb density within grid cell g is calculated by finding

Airbnbdensityg =
TotalAirbnbunitsg

Totalresidentialunitsg
.

That is, within a grid cell, the density of Airbnb units is the ratio of the number of Airbnb units

within the grid cell to the total number of residential units in the grid cell. Results for Airbnb

density percentiles 50%, 75%, and 90%5 indicate that the coefficient estimate on the variable of

interest (log-transformed Airbnb reservations) is neither statistically nor economically significant

even in those grid cells with high concentrations of Airbnb units. This suggests that reservation

status, and thus Airbnb occupancy, have no significant measurable effect on water usage at an

aggregate level in our data. A robustness check using a random coefficient modeling strategy con-

firms these results.

There are several potential reasons behind this result. First, due to uncertainty regarding the

exact locations of Airbnb units, some error may have been introduced when sorting the Airbnb

units into the 1 km2 grid cells. To test for this we run the model with units aggregated to a 2

km2 grid instead of the original 1 km2 grid. This will reduce the error associated with sorting

Airbnbs with an imprecise location into a grid, but necessarily reduces the number of observa-

tions. The results of this model are not significantly different from the original results presented

in Table 5.

Second, during the COVID-19 related shutdown of tourism there was an offsetting shift in

residential behavior. A precipitous drop in tourism almost certainly led to a similarly sharp re-

duction in water use at Airbnb hosts. Unfortunately, the data does not allow us to isolate individ-

ual Airbnb locations from residential ones. During the shutdown, residents spent much more time

at home due to loss of employment, work-from-home arrangements, and/or a lack of participation

in activities that would have brought them out of their homes (Fuleky 2021). In fact, SafeGraph

data suggest that the fraction of island residents staying at home for the entire day doubled from

about 20% prior to the pandemic to 42% in April of 2020 (Tyndall and Hu 2020). In short, we

5For reference, Airbnb density is 3.6% in the median grid cell, 12.7% in the 75th percentile cell, and
46.2% in the 90th percentile cell.
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Table 5: Results corresponding to Equation (7). Column (1) uses all grid cells in the data,
whereas columns (2) through (4) limit the data to the indicated grid-level Airbnb density
percentiles. Density is calculated as the number of Airbnb units relative to total residen-
tial units in the grid cell. Fixed effects for month and grid cell are included. Errors are
clustered by grid cell and month.

Dependent variable:

Log mean aggregate water use (L/day)

(1) (2) (3) (4)

Log Airbnb reservations 0.0002 0.005 −0.002 −0.011
(0.002) (0.007) (0.009) (0.019)

Airbnb density percentile All data 50th 75th 90th
Month FE Yes Yes Yes Yes
Grid FE Yes Yes Yes Yes
Observations 33,368 16,367 8,187 3,364
R2 0.982 0.786 0.731 0.704
Adjusted R2 0.981 0.782 0.725 0.691
Residual Std. Error 0.212 (df = 32843) 0.245 (df = 16070) 0.315 (df = 7995) 0.451 (df = 3229)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

hypothesize that any decrease in water use at Airbnbs during the shutdown may have been offset

by residents consuming more water while staying at home.

These results and their robustness checks leave us with the conjecture that the insignifi-

cant results are likely driven by a change in resident behavior during the COVID-19 pandemic,

rather than by data limitations. In Section 4.1 where residents were not a confounding factor,

the COVID-19 shock helped to identify the relationship between tourism and water consumption.

Here the decline in water consumption due to the lack of tourists appears to be offset by an in-

crease in water consumption due to residents staying at home. Though we are unable to formally

test this hypothesis using the available data, our conjecture is supported by the unusually high

residential water use observed during the pandemic, also visible in Figure 1.

5 Discussion

In summary, this study aims to measure the relationship between tourism and water use on the

island of O‘ahu using several different strategies. First, we analyze aggregate tourist counts and

their association with aggregate hotel water use. When tourism is measured by hotel occupancy,

a 1% lower occupancy is associated with a 0.46% lower water use. The lack of a 1-to-1 relation-

ship (i.e. a 1% change in occupancy does not equate to a 1% change in hotel water use) may be
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due to large fixed water uses by hotels such as landscape irrigation and pools.

We also aim to understand what the decline in mobility may reveal about patterns of water

use at various points of interest in Hawai‘i. When we measure location visits with SafeGraph foot

traffic data, our results suggest that a 1% lower foot traffic in hotels is associated with about a

0.36% lower water use in hotels. Here the low coefficient value may be due to the fact that not

all foot traffic visiting the hotel comes from hotel guests. For example, many hotels have beaches

and other attractions that may cause foot traffic to be on-location long enough to enter our data

set, but ultimately use little to no water during their stay. We were also able to show that water

consumption at various points of interest had different sensitivities to foot traffic depending on

the location type.

Finally, considering our results and conclusions from the hotel water use above, we turned

to Airbnb water use to see how much more water use could be explained by tourists who choose

these accommodations. Regardless of our model, we were unable to estimate any relationship that

was significantly different from zero, despite many tourists choosing to stay in these rentals and a

clear decline in reservations during the pandemic. We think that the drop in Airbnb reservations

during the COVID pandemic, which we hoped to use for identification, was offset by an increase

in work-from-home arrangements for residents of the island. The decrease in water use from a

lack of Airbnb reservations may then be offset by residents staying home and consuming more

water there. Indeed, if we look again at Figure 1, we see that aggregate residential water use in-

creased in 2020 compared to previous years. Limitations with the data that prevented us from

accurately matching households and Airbnb units may have also been a contributing factor.

Looking ahead, the importance of understanding the relationship between water use and

transient vacation rentals such as Airbnbs relative to hotels and resorts may become less impor-

tant on O‘ahu, as the number of vacation rentals has recently been significantly limited by local

policymakers. However, this will not be the case in all locations across the country. A similar

analysis may prove beneficial to understand this relationship in other tourist destinations that

have a high number of vacation rentals, so long as it does not suffer from the same difficulties

as our COVID-period study. Gaining a better understanding of the relationship between water

use and vacation rentals relative to hotels and resorts would help to inform policy decisions that

could potentially incentivize tourists to shift from one accommodation type to the other, e.g.,

more stringent permitting requirements for vacation rentals or increased hotel taxes.

An additional point worth discussing is the analysis using foot traffic data and the makeup

of tourists before, during, and after the COVID shutdowns. As mentioned in the data section

above, foot traffic is measured only by tracked cell phones, whose visited locations and dura-

tion of stay can be determined. We thus likely only have a small sample of the overall number

of tourists to a location, which we assumed remained a constant fraction of total tourists over

time. There is a possibility that this may not be the case, since during the shutdown the makeup
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of tourists (and even local families visiting various locations) may have changed to some degree.

The pandemic and its effects on the economy of O‘ahu allowed for an interesting study of the

shifts in water consumption behavior before and during the large-scale shutdowns of tourism and

other related commercial activities, along with the potential effects of a shift to work-from-home

arrangements for many residents. However, care should be taken when interpreting the results be-

yond the scope of this analysis. The significant disruptions caused by the pandemic followed in

the wake of extremely high capacity utilization in the tourism industry. The negative shock cre-

ated (temporary) “slack” in the system, and we likely only observed a partial adjustment in water

consumption. Since most hotels did not completely shut down, there remained a “fixed” amount

of water consumption, for example for pools and other amenities. Consequently, we expected our

coefficient estimates to be less than one, while a complete shutdown of hotel operations may have

resulted in estimates closer to one. Further work will be required to determine whether our re-

sults carry over for more marginal changes, like a gradual change in tourism over time. Also, had

the tourism industry experienced a positive shock, it would have been pushing against existing

capacity constraints, a different situation from ours. Applying the relationships found here to an

increase in tourism may not be appropriate since increases and decreases in tourism may affect

water consumption asymmetrically.
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