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Traditional and novel time‑series 
approaches reveal submarine 
groundwater discharge dynamics 
under baseline and extreme event 
conditions
Trista McKenzie1,3*, Henrietta Dulai1 & Peter Fuleky2

Groundwater is a vital resource for humans and groundwater dependent ecosystems. Coastal aquifers 
and submarine groundwater discharge (SGD), both influenced by terrestrial and marine forces, are 
increasingly affected by climate variations and sea‑level rise. Despite this, coastal groundwater 
resources and discharge are frequently poorly constrained, limiting our understanding of aquifer 
responses to external forces. We apply traditional and novel time‑series approaches using an SGD 
dataset of previously unpublished resolution and duration, to analyze the dependencies between 
precipitation, groundwater level, and SGD at a model site (Kīholo Bay, Hawaiʻi). Our objectives 
include (1) determining the relative contribution of SGD drivers over tidal and seasonal periods, (2) 
establishing temporal relationships and thresholds of processes influencing SGD, and (3) evaluating 
the impacts of anomalous events, such as tropical storms, on SGD. This analysis reveals, for example, 
that precipitation is only a dominant influence during wet periods, and otherwise tides and waves 
dictate the dynamics of SGD. It also provides time lags between intense storm events and higher 
SGD rates, as well as thresholds for precipitation, wave height and tides affecting SGD. Overall, we 
demonstrate an approach for modeling a hydrological system while elucidating coastal aquifer and 
SGD response in unprecedented detail.

The coupled coastal aquifer-ocean system is a highly dynamic environment at the convergence of land and 
ocean, where major water and chemical fluxes are driven by the hydrological  cycle1. Complex biogeochemical 
interactions modulate inputs to the coastal ecosystem from both land and sea, which are increasingly affected 
by burdensome levels of anthropogenic influence, such as urban, industrial, and agricultural runoff, in addition 
to impacts associated with climate  change2,3. While the importance of preserving coastal water quality has been 
well documented, many coastal environments and hydrological processes occurring in these systems remain 
understudied and poorly  characterized4. Understanding coastal hydrological interactions are key for maintaining 
sustainable water resources and groundwater dependent ecosystems, particularly in the advent of a changing 
climate, atmospheric warming, and increasing sea levels.

Coastal aquifers and subsurface flow are insufficiently examined in many locations globally. Groundwater is 
the largest reservoir of readily available fresh water for drinking water resources, but these aquifers, especially 
those located along coastlines, are vulnerable to anthropogenic and climatic  pressures5. For example, groundwater 
is the primary source of drinking water on Pacific Islands, but changes in rainfall patterns and sea-level rise are 
leading to decreasing potable water and increasing aquifer  salinization2,5. Overlapping terrestrial and oceanic 
processes occurring on differing temporal scales and magnitudes mean it is frequently challenging to analyze 
interactions of groundwater with other water reservoirs (e.g., precipitation, terrestrial surface runoff, ocean).

Groundwater levels are also influenced by oceanic-atmospheric climate variability such as the El Niño South-
east Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). The ENSO has three phases (Neutral, El 
Niño, and La Niña), determined by the Ocean Niño Index (ONI), which is based off sea surface tempera-
ture (SST)  variability6. El Niño (warmer than average SST; ONI > 0.5) and La Niña (cooler than average SST; 
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ONI <  − 0.5) can both have major impacts to local weather patterns and ocean conditions  globally6. For instance, 
El Niño is associated with drier conditions in the central  Pacific6. El Niño is also associated with increased tropical 
cyclone activity in the Pacific Ocean, which can result in substantial amounts of episodic  rainfall6. Changes in 
precipitation, for instance, directly affect groundwater levels as recharge is the major process leading to aquifer 
replenishment.

Submarine groundwater discharge (SGD), or groundwater that discharges to the coastal ocean, has long been 
recognized as both a critical resource to coastal  ecosystems7,8 as well as a vector for pollutants to reach the coastal 
 ocean9–11. This is particularly the case for small volcanic  islands12, where SGD comprises a disproportionate con-
tribution to the water budget relative to land mass. Total SGD is comprised of both fresh and saline SGD. Fresh 
SGD is primarily driven by terrestrial forces, such as precipitation which influences the vertical hydraulic gradi-
ent. In comparison, saline SGD is mostly driven by marine forces such as tidal pumping, wave setup, and seasonal 
ocean water level  fluctuations4,13. Critically, SGD can be enriched in chemical constituents that reflect land use, 
such as nutrients, trace metals, carbon, and  pharmaceuticals14–22. In a well-balanced, unperturbed system, SGD 
delivers nutrients and alkalinity that sustain coastal  ecosystems23. In densely populated areas, however, SGD 
can be a vector for pollutants leading to poor water quality, coastal eutrophication, and harmful algal  blooms4.

While SGD is a crucial process in the water cycle, characterization can be challenging given its spatiotem-
poral heterogeneity and dependence on scale of measurements. For example, field observations of salinity, 
temperature, and geochemical tracers (e.g., radon, radium) can be used to determine spatial distribution of 
SGD, whereas hydrological models are typically used to analyze driving forces, temporal variability, and coarser 
resolution  distribution4,14,24. Hydrological models can provide insight into water budgets and environmental 
interactions over longer time scales and provide powerful predictive capacity under future hydrological condi-
tions and dynamics. The successes of these models, however, are typically reliant on an accurate portrayal of 
hydrogeological  parameters4.

Understanding changes to SGD and coastal aquifer dynamics under climate change and sea-level rise is 
increasingly critical. While hydrological models can successfully capture current and predict SGD under future 
climate scenarios, comprehensive modeling is difficult for complex coastal aquifers with poorly constrained or 
understood hydrogeology. Furthermore, despite the significance of SGD to coastal water and chemical budgets, 
few long-term SGD records  exist4, making it difficult to account for in models. To overcome these challenges, 
we analyzed observed patterns in SGD during baseline conditions, typical and intense precipitation events, high 
tides and seasonal ocean levels, and large swell events using long-term high-resolution SGD and hydrological 
parameter records coupled with big data analyses methods. The approach applied here, while not the goal of 
this research at present, should also be considered in the broader efforts to upscale SGD estimates both spatially 
and temporally as it complements hydrological models and puts short-term geochemical point measurements 
into perspective.

Our study system represents a relatively simple directional problem where precipitation and ocean water 
levels (including tides, swells, seasonal sea level fluctuations) affect the underlying coastal aquifer dynamics 
(Fig. 1). Here, we employ empirical approaches to understand relationships between atmospheric, terrestrial, and 
oceanic forces and their role in modifying groundwater levels, SGD, and coastal salinity. We apply this approach 
to characterize water cycle interactions at a model study site in the Kīholo Aquifer, Hawaiʻi with the objectives 
of (1) determining the relative contribution of multiple superimposed terrestrial and marine SGD drivers, (2) 
establishing temporal relationships between processes influencing SGD, such as rainfall, groundwater level, and 
tides, and (3) evaluate the impact of anomalous events (such as tropical storms) on SGD and its drivers. Our 
hypotheses include (1) tidally driven forces will have the greatest influence on groundwater levels, SGD, and 
coastal salinity, (2) precipitation (particularly storm-derived) will precede significant increases in groundwater 
levels and SGD, and (3) tropical storms and big wave events will lead to increased SGD.

Study site
The study was conducted in Wainanaliʻi Pond, located in Kīholo Bay (3.2 km length), on Hawaiʻi Island (19.8583, 
− 155.9208; Fig. 2; see Supplementary Fig. S1 online). The embayment and pond are flushed by the open ocean 
and due to freshwater inputs along the shoreline, Wainanaliʻi Pond has estuarine circulation with a sharp strati-
fication and pycnocline at 1 m depth. Tides in the area have a mean diurnal range of 0.65  m25. Kīholo Bay is not 
subject to stream flow and there are no perennial streams in the Kīholo watershed due to the highly permeable 
lithology.

The Kīholo aquifer is an unconfined basal lens and comprised of interbedded basalt from three different 
volcanoes, including (from youngest to oldest) Hualālai (elevation = 2,521 m), Mauna Loa (elevation = 4,169 m), 
and Mauna Kea (elevation = 4,207 m). Kīholo Bay itself is flanked on the surface by two recent lava flows—the 
1800 Ka ‘ūpūlehu flow from Hualālai to the south and the 1859 Mauna Loa flow to the  north27,33 (Fig. 2). Coastal 
groundwater levels are tidally influenced, even thousands of meters inland from the  shore34. Within the subsur-
face numerous structural barriers formed by various types of basaltic lava flows influence, obstruct, and channel 
groundwater flow, however, these are mostly  unspecified30,35,36. For example, previous studies have suggested that 
some Kīholo Aquifer recharge is channeled by a subsurface structural boundary extending from the summit of 
Hualālai to Puʻu  Anahulu37 while others have confirmed the presence of deep groundwater  conduits31, yet none 
of these features and their hydrogeological roles are well described. Nearshore SGD is well-characterized along 
this coastline, occurring primarily in the form of point discharge (e.g., discrete springs as opposed to diffuse 
flow) ranging from 200 to 7000  m3/day38–40. Mean annual rainfall (based on the 30-year average) to the watershed 
ranges from 260 to 1200 mm/year41, with the most recharge (288,000  m3/day) occurring at higher elevations (500 
to 2000 m) along the slopes of the  volcanoes42. Groundwater pumping (33,000  m3/day) comprises about 11% of 
total recharge (Commission on Water Resource Management, personal communication).



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:22570  | https://doi.org/10.1038/s41598-021-01920-0

www.nature.com/scientificreports/

Results
Tidal and seasonal fluctuations. Seasonality in the time series can be broken down into two main 
oscillations: tidal and seasonal effects. Parameters that were primarily driven by tides were strongly associated 
with 6-, 12-, and 25-h oscillations and include ocean water level, groundwater level, salinity, wave height, and 
SGD (Fig. 3; see Supplementary Figs. S2-S4 online). SGD was greatest at low tide, when the hydraulic gradi-
ent (groundwater level minus ocean water level) was at its maximum. Similarly, outside of major precipitation 
events, salinity was lowest during low tide given the greater influence from SGD. Longer term seasonal effects 
included air temperature, precipitation, and groundwater level. Wet season (May through October) average 
air temperature (22 ± 1.2  °C), precipitation (2.1 ± 5.4  mm/hr), and groundwater levels (0.93 ± 0.049  m) were 
greater than those occurring during the dry season (November through April; 20 ± 0.87 °C, 0.43 ± 1.9 mm/hr, 
and 0.91 ± 0.029 m, for air temperature, precipitation, and groundwater levels, respectively), although it is worth 
mentioning that the study period had a significant overlap with an El Niño period.

Groundwater level is both tidally and seasonally modulated as it is influenced by both recharge from precipita-
tion and ocean water level. Because of the porous and highly conductive basalt matrix and groundwater elevations 
near sea level, groundwater levels are affected by ocean water  level34. While the groundwater monitoring station 
was 5.6 km inland from the shore and some signal attenuation is anticipated, ocean water and groundwater levels 
were positively correlated  (R2 = 0.54), with a lag of 5 h (see Supplementary Fig. S5online). The lag is distance 
dependent and expected to decrease closer to the shoreline. However, neither the distance nor the lag affects the 
25-h seasonal and longer-term trends analyses.

Longer term trends. The longer-term trend component was extracted after removing all tidal and seasonal 
effects (Fig. 4). Here, we focused on interconnectivity between precipitation, groundwater levels, SGD, and salin-
ity. A cursory examination of these parameters plotted with respect to time shows a clear lagged relationship 
between precipitation and subsequent groundwater levels, offset by a period of two to four weeks. This relation-
ship was confirmed as significant through cross-correlation, with a maximum  R2 value at four weeks of 0.55 
(Fig. 5). High groundwater levels were also associated with high SGD three weeks later (Fig. 5).

Relationships between drivers and parameters of interest were further investigated by quantifying the per-
centage contribution to each parameter using a random forest classifier to calculate feature importance (Fig. 6). 
Groundwater level drivers included ocean water level, wave height, and precipitation, and then subsequently SGD 
included all groundwater drivers in addition to groundwater level, and finally coastal salinity analysis included all 
SGD drivers, in addition to SGD. At the 1-h temporal resolution, tidally driven effects such as ocean water level, 
wave height, and SGD were the primary influences on groundwater levels. For SGD, tidally influenced variables 
were again the greatest contributor at the 25-h temporal resolution when El Niño conditions were not present. 

Figure 1.  Conceptual flowchart of processes impacting parameters of interest (indicated in blue boxes – coastal 
salinity, SGD, and groundwater level). The three parameters analyzed were selected because of their direct and 
environmentally relevant relationships. Ecosystems are greatly dependent on coastal salinity (parameter 1), 
which at the study site is driven mostly by SGD (parameter 2) and ocean processes. SGD therefore plays an 
essential ecological role. Groundwater (parameter 3) is the ultimate source of fresh meteoric groundwater in 
SGD. Additionally, we must acknowledge that marine drivers are also moderating SGD. Tides are not included 
as a parameter of interest since tides are predictable and instead are used as an explanatory parameter.
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During El Niño periods, however, processes such as precipitation had a greater impact on SGD, increasing by 
9%. For features influencing salinity at the 25-h resolution, wave height and precipitation had a greater effect 
during El Niño periods compared to those when El Niño was not ongoing.

Discussion
Both tidal and seasonal components influence SGD as previously demonstrated in geochemical and hydrological 
modeling  studies1,3,4,13,14,43. SGD estimates based off chemical budgets typically represent shorter time scales, 
whereas hydrological models require adequate knowledge of the aquifer hydrogeology and field observations 
to create and calibrate the models. Additionally, there are only a few studies that monitor SGD over a sufficient 
temporal period to discern tidal and seasonal patterns and relationships with its terrestrial and marine driving 
forces. Here, we propose that SGD observations coupled with precipitation, groundwater level, ocean water level, 
and wave height data can be used to reveal relationships between SGD driving forces using time series analysis 
and machine learning methods.

Tidal patterns discerned from the time series decomposition (Fig. 4) and lag analysis (Fig. 5) displayed pat-
terns with 6-  (M4, shallow water overtides of principal lunar tide), 12-(M2 principal lunar semidiurnal tide), and 
25-(K1, lunar diurnal tide) hour temporal resolutions. Furthermore, the random forest classification (Fig. 6) dem-
onstrated that short-term tidal effects were still the dominant driver for groundwater levels at the resampled 25-h 
temporal resolution. This makes sense because groundwater levels are influenced by both tidal (ocean water level 

Figure 2.  Conceptual cross-section of the study area and processes influencing groundwater levels, SGD, and 
coastal salinity (not to scale). Locations and ages (years before present, BP) of lava flows are approximated 
on the surface and with depth according  to26–29. These historic lava flows are significant as they provide a 
heterogeneous substrate for groundwater flow that is hard to capture in hydrological  models30. Precipitation 
infiltrates into the young, porous basalt and flows in the subsurface before discharging to the coastal ocean as 
SGD. The assumed location of the subterranean estuary is illustrated by the blue (fresh), purple (brackish), and 
pink (saline) colors near the discharge zone. These colors are purposefully cut off at a relatively short distance 
from the shoreline because there is no information on the structure of the aquifer other than the inferred 
existence of some vertical and horizontal barriers to  flow30 and deeper  conduits31. The subsurface geology and 
hydrogeology in the study area is complex and not well-characterized, but it is hypothesized that there are 
irregularities and/or a confining layer(s) that impede groundwater flow forcing some SGD to discharge 1–2 km 
offshore (deep SGD;31) in addition to the nearshore, shallow SGD that was the focus of this  study32. Ocean water 
level, groundwater level, wave height, tidal pumping, and seawater circulation are all modulated by tidal and 
seasonal fluctuations. Illustration by Brooks Bays, SOEST Publication Services.
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Figure 3.  1 h resolution data. Air temperature (oC), precipitation (mm/hr), groundwater level (m), SGD 
(cm/d), ocean water level (m), salinity, and wave height (m) are shown with respect to time. Average uncertainty 
for SGD was ± 24%.
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and wave height), which are present at 24.8 and 28-day periods, and seasonal (precipitation) oscillations, but as 
precipitation is episodic in nature, the tidal signature will override the seasonal one. Similarly, tidally influenced 
parameters had the greatest impact to SGD and salinity during periods that did not coincide with extreme events.

Seasonal patterns were associated with fluctuations in precipitation. While precipitation impacts are not 
instantaneous as demonstrated by the lag analysis (Fig. 5), rainfall, particularly when associated with storm 
events, led to long-term changes in groundwater levels and SGD (Fig. 4). Over longer time intervals (e.g., compar-
ing 1-h vs. 25-h resolution), precipitation becomes an increasingly important driver to SGD and coastal salinity, 
as evidenced by the random forest classification (Fig. 6) and studies conducted in other island  environments3. 
This corroborates with our lag analyses as precipitation impacts to these components are not instantaneous.

Traditional time series approaches, such as decomposition and lag analysis are useful, but may not be able 
to fully resolve driver-response relationships between environmental parameters given the influence of over-
lapping processes. These issues were addressed by conducting additional analyses using a CUSUMs approach 
to examine driver-response relationships between groundwater levels, SGD, coastal salinity, and precipitation, 
ocean water levels, and wave height (Fig. 7). The CUSUM plot shows the cumulative sum of the underlying 
(standardized) time series. A positive CUSUM slope arises from the aggregation of above-average underlying 

Figure 4.  25-h trend component from the time series decomposition. Mean values for each variable are 
shown in the dashed lines. (A) normalized precipitation (blue) and groundwater levels (red), (B) normalized 
groundwater levels (red) and SGD (yellow), and (C) normalized SGD (yellow) and coastal salinity (teal) with 
respect to time. Most of the time series coincided with El Niño (ONI ranging from 0.6 in October through 
December 2014 to 2.6 in November 2015 through January 2016).
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values, while a negative CUSUM slope arises from the aggregation of below-average values. Underlying values 
are more extreme (farther away from the mean) as the CUSUM slope becomes steeper. Overall, periods where 
precipitation exceeded 1 mm/hr were associated with above average groundwater levels and SGD and below 
average coastal salinity. While this result is somewhat intuitive, few studies have quantified this  effect1,13. Further 
evidence was derived from the resulting CUSUM analysis slope, which can be used as a measure of the amplitude 
of influence in a driver-response relationship. Precipitation rates between 1 and 4 mm/hr for groundwater (1 to 
7 mm/hr for SGD) led to the greatest increase in groundwater and SGD rates (Fig. 7; see Supplementary Table S1 
online), where the slope was an order of magnitude greater (72 and 10 × for the relationship between precipitation 
and groundwater and SGD, respectively) than other precipitation thresholds. The degree of influence declined 
for precipitation rates between 4 and 34 mm/hr (for groundwater) and 7 and 28 mm/hr (for SGD). Salinity was 
the lowest at precipitation rates ranging from 1 to 8 mm/hr (slope =  − 65x), and then remained below average 
for precipitation ranging from 8 to 36 mm/hr (slope = 2.2x). The relatively small sample size for precipitation 
above 40 mm/hr limits our ability to describe driver-response relationships above this threshold. Overall, slope 
decreased by 96 to 99% from the first precipitation threshold (range of upper bound: 4–8 mm/hr) to the final 

Figure 5.  Cross correlation (CCF) between the 25-h resampled trend component for precipitation and 
groundwater levels (A) and groundwater levels and SGD (B). The blue lines indicate that the cross correlation is 
significant at the 95% confidence interval, thus any value outside of the lower and upper bands is significant. The 
gradual slope on both cross-correlation plots indicates that impacts from precipitation on groundwater (A) and 
groundwater on SGD (B) are not instantaneous but accumulate and get pronounced over time.
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precipitation threshold (range of lower bound: 28–36 mm/hr) for groundwater level, SGD, and salinity (see Sup-
plementary Table S1 online). These thresholds indicate the presence of nonlinear response patterns, justifying 
our multipronged approach.

Tidally driven parameters, such as ocean water level and wave height, had a significant impact on groundwater 
level, SGD, and salinity. Ocean water levels less than − 0.1 m led to low groundwater levels and between -0.1 
to + 0.2 m led to high groundwater levels. Ocean water levels greater than + 0.2 m were typically associated with 
bimonthly spring tides and had a low groundwater levels, suggesting that there is a threshold for tidal modulation 
of groundwater, perhaps due to constraints on rock  permeability30. Ocean water levels less than 0 m were associ-
ated with high SGD and low salinity, and the opposite was true for ocean water levels greater than 0 m. This is 
not surprising as SGD is typically greatest at low tide when the hydraulic gradient is the steepest and one would 
expect salinity to be the lowest when SGD is greatest. Wave heights less than 0.5 m led to low groundwater levels, 
between 0.5 and 1.3 m led to high groundwater levels, and then greater than 1.3 m led to low groundwater levels 
before evening out at 1.5 m (Fig. 7). Wave heights between 1.5 and 2.5 m were typically associated with either 
tropical storms or big wave events. Similarly, while the relationship between wave height and SGD is less clear-
cut when wave height is less than 0.8 m, wave height between 0.8 and 1.2 m led to high SGD, perhaps reflecting 
additional influence from saline SGD due to increased wave setup, tidal pumping, and recirculating saline water. 
Salinity had the opposite relationship to wave height compared to SGD, where wave heights between 0.5 and 
0.8 m led to high salinity, while those between 0.8 and 1.5 m led to low salinity. Due to the small sample size for 
wave heights above 1.5 m, we are not able to interpret above this threshold. The impact of wave height on SGD 
may sound counterintuitive hydrologically because waves can add water into the coastal aquifer during wave 
set-up4, but if the high waves coincide with spring tides, storms, precipitation events, or higher SGD, then the 
relationship can be explained by the influence from these processes instead.

Outliers and event detection. Outliers were used for additional analyses and event detection. Univariate 
outliers (see Supplementary Table S2 online) were examined to look at specific feedback mechanisms but were 
not used as a basis for outlier detection. Groundwater levels ranged from 0.75 to 1.1 m (average = 0.92 ± 0.053 m 
with respect to MSL), with outliers occurring for 4 days below the lower bound and 4 days above the upper 
bound. High groundwater levels occurred during October 2015 and were associated with previous precipitation 
events sourced from tropical storms in August through September 2015 (see Supplementary Fig. S3 online). 
Low groundwater levels occurred in May 2014 when ocean water levels were also low. SGD ranged from 0 to 
2,000 cm/d (average = 150 ± 240 cm/d), outliers were identified on 3 days below the lower bound and 8 days 
above the upper bound. Higher SGD rates occurred one to two months after major precipitation events, whereas 
lower SGD rates were typically associated with lower wave heights, perhaps due to decreased contribution from 
saline SGD from wave set up. Salinity ranged from 5.8 to 33 during the study period with an average of 18 ± 4.8. 
Of this, 7 days during the study period were considered outliers below the lower threshold (salinity ranging from 
11 to 12) primarily due to high rainfall and 3 were above the upper threshold (salinity ranging from 24 to 25).

Figure 6.  Feature importance calculated using random forest classification conveying relative importance of 
drivers to groundwater level, SGD, and coastal salinity at 1- and 25-h intervals. 25-h intervals are separated 
based on periods with El Niño (ONI > 0.5) and without El Niño (ONI < 0.5) conditions present.
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Overall, 25 days were identified as multivariate outliers (Table 1). Of these, 8 days were associated with 
hurricanes, 12 days were associated with big wave events in February through March 2016, and the remaining 
were associated with rainfall events. The 2015 Central Pacific Hurricane season was the most active on record, 
with 16 named  storms6. On August 30, 2015, a record three Category 4 hurricanes (Hurricanes Kilo, Ignacio, 
and Jimena) were co-occurring east of the international dateline. While this occurrence was anomalous in the 
historical record, there is evidence that tropical storms will increase in both frequency and intensity around the 
Hawaiian  Islands44,45.

Isolating outliers were informative for extracting relationships that may have an even greater influence in 
the future. For instance, hurricanes were associated with increased precipitation (in addition to higher seasonal 
air temperatures and wave height), subsequently leading to increased groundwater levels and SGD (Fig. 3). 
While ocean water levels typically have an inverse relationship with SGD, this effect is amplified during periods 
of above average wave height (Fig. 4). This is likely because the hydraulic gradient decreases further, leading 
to decreased SGD. The effects of ENSO and hurricanes on groundwater levels have been documented in other 
locations globally, such as the mainland United States and  India46,47. Similar to our results, a model-based study 
reported SGD, groundwater level, and recharge anomalies that were linked to ENSO for a barrier island in North 
Carolina,  USA48.

Climate change in Hawaiʻi is anticipated to lead to decreased monthly average precipitation (but an increase 
in extreme rainfall events), increasing sea levels, increasing water and air temperature, disruptions to trade wind 
patterns, and an increase in the hurricane frequency  locally44. The data collected during this study provides vital 
information about how precipitation can impact groundwater levels, SGD, and coastal salinity. For instance, 
an increase in the frequency and intensity of catastrophic rainfall events (and coincident decline in average 

Figure 7.  CUSUM driver-response plots (columns = drivers, rows = response). Drivers shown include 
precipitation rates exceeding 1 mm/hr (mm/hr; column 1), ocean water level (OWL; m with respect to 
MSL; column 2), and wave height (Wave Ht; m; column 3). These are compared to the following responses: 
groundwater levels (m; row 1), SGD (cm/d; row 2), and salinity (row 3). The underlying data showing 
the relationship between x and y are shown in the green dots on the primary y-axis. The driver-response 
relationship is illustrated with the black line (secondary y-axis), comparing the CUSUM groundwater level, 
SGD, and salinity vs. precipitation, OWL, and wave height.
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precipitation) could lead to seasonal changes in the availability of water resources or the magnitude of SGD. 
All recorded tropical storms that passed near the main Hawaiian Islands during El Niño were associated with 
outliers in this study, particularly due to changes in precipitation and groundwater levels. Multiple studies have 
demonstrated that decreased precipitation and increased stress on water resources leads to decreasing fresh SGD, 
higher sea levels, and salinization of coastal  aquifers49,50. Major rainfall events also lead to decreasing coastal 
salinity from storm runoff, which can have negative ecological impacts as biota tend to be sensitive to certain 
salinities and sediment load.

Both in Hawaiʻi as well as globally, a decrease in fresh SGD and increasing sea levels could have major nega-
tive impacts to coastal ecosystem health. Groundwater dependent ecosystems, which rely on lower salinity SGD 
with optimal nutrient levels, are aggravated by changing precipitation patterns and sea-level  rise51. Humans have 
relied on these ecosystems for years—for instance, traditional Hawaiian aquaculture depended on SGD to feed 
coastal  fishponds52, such as the one in Kīholo Bay. Beyond looking at this from a human-impact perspective, 
anthropogenic influence on SGD has also led to coastal eutrophication and harmful algal blooms in for instance, 
 Bermuda53, and has been associated with an increase in coral reef disease severity in  Guam54. These groundwater 
dependent ecosystems are vulnerable and are posed to face additional challenges in the upcoming decades.

The methods and analyses used here are applicable to other coastal aquifers globally but are particularly 
useful for areas that lack well-characterized hydrogeology and thus are difficult to describe with a hydrological 
model. Here, we were able to constrain the temporal relationships between variables, elucidate driver-response 
relationships, determine which predictors have the greatest influence on a variable, and isolate events to learn 
more about the relationship between atmospheric, terrestrial, and oceanic processes under conditions that will 
likely be more common in the future. In this way, our methods provide similar results to a hydrological model 
without the requirement of a highly monitored subsurface. Given the conditions of the field study, we were unable 
to separate the fresh and saline SGD fractions due to variations in the radon to salinity ratio and the embay-
ment residence time over longer time periods. While the radon to salinity ratio holds consistent for shorter time 
periods (weeks to months), seasonal factors such as rainfall or large swell events make it challenging to derive 
the fresh SGD fraction without very high  uncertainties55. In another example, urban coastal aquifers frequently 
experience a “coastal groundwater squeeze” sourced from declining water resources due to increased saliniza-
tion, overextraction, land subsidence, and  pollution2. Additional applications could include providing insight to 
feedback relationships between coastal salinity and precipitation and/or sea-level rise in terms of fish abundance, 
supply, and diversity. In all, the methodology applied in this study can provide valuable predictive feedback for 
understanding perturbations to the water cycle in a wide variety of environments.

Conclusion
This study applies both traditional (e.g., decomposition, cross-correlation) and novel (e.g., random forest classifi-
cation, CUSUMs analysis) time-series approaches to understand coastal aquifer responses to atmospheric, terres-
trial, and oceanic forces at a model study site with poorly characterized hydrogeology. Using these techniques, we 
were able to establish that there is a two to four week temporal lag between precipitation and groundwater levels. 
Increases in SGD occurred three weeks following higher groundwater levels. We were also able to demonstrate 
that tropical storms led to increased SGD due to increased precipitation. The frequency and magnitude of these 
tropical storms also coincided with a strong El Niño, and the influence of precipitation on SGD increased by over 
9% during this period. Yet, outside of anomalous events, tidally driven parameters had the greatest instantaneous 
influence on groundwater levels, SGD, and coastal salinity.

This research demonstrates the utility of combining field-based hydrological measurements with data-driven 
approaches, particularly for areas where the underlying aquifer characteristics are difficult to portray in a hydro-
logical model. The methodologies applied in this research can be used to provide further insight into water 

Table 1.  Multivariate outlier events by date, variables above or below average during those dates, and 
associated cause. Three types of events were identified from the record: heavy rainfall, tropical storms, and big 
wave events.

Date Above average Below average Reason

Jul 22, 2014 Precip Rainfall

Oct 18, 2014 Precip, GW, wave height Hurricane Ana

Aug 18, 2015 Precip, GW Hurricane Hilda/Kilo

Aug 23–24, 2015 Precip, air temp, GW, wave ht Hurricane Kilo

Sep 2–3, 2015 Precip, air temp, GW, wave ht Salinity Hurricane Ignacio

Sep 9, 2015 Precip, air temp, GW, wave ht Hurricane Jimena

Sep 13, 2015 Precip, air temp, GW, wave ht Hurricane Jimena

Feb 17–24, 2016 Wave ht, OWL Big wave event

Mar 1–2, 2016 Wave ht Salinity Big wave event

Mar 5, 2016 Wave ht Salinity Big wave event

Mar 20, 2016 Wave ht Big wave event

Mar 24, 2016 Precip Rainfall

May 22–24, 2016 Precip OWL Rainfall event coincident with spring tides
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budgets and management, resources that are increasingly critically threatened under climatic and land-use 
changes.

Methods
Data collection and SGD calculation. Radon data were collected using an autonomous gamma spec-
trometer called the SGD Sniffer at 0.3  m depth below the surface of the  water32, which was deployed from 
March 2014 through July 2016 in Wainanaliʻi Pond. Conductivity, water depth, and water temperature were 
concurrently logged with a CTD probe (Schlumberger Inc. CTD diver). All data were collected with a 1-h time 
resolution. Briefly, SGD was calculated using a transient radon mass balance (Eq. (1); see Supplementary Fig. S6 
 online56), where  FSGD is the SGD advection rate (m/day), A is the radon activity (Bq/m3) measured by the SGD 
Sniffer,  Agw,  Aocn, and  Aatm refer to radon activities in groundwater, offshore ocean, and the atmosphere, respec-
tively,  ARa is the dissolved 226Ra activity,  zpl is the plume thickness (m), T refers to the water residence time 
(days), and  Fatm and  Fmix account for radon losses due to atmospheric evasion and lateral mixing (Bq/m2/day). 
Uncertainties were propagated throughout the mass balance calculations.

Fatm was calculated using Eq. (2), where k is the gas transfer coefficient (m/day), a is the radon gas solubility 
coefficient, and  Aatm is the radon activity in the atmosphere. Local wind speed (NOAA Tides and Currents, m/s) 
was used to derive the radon gas transfer and solubility coefficients.

Air temperature (57, located at 19.7950, − 155.8453, 710 m elevation),  precipitation57, groundwater level (58 
USGS site 194,327,156,002,301; located at 19.7210, − 156.0034, 5,570 m from shore), ocean water level (25 NOAA 
Tides & Currents site 1,617,433, with respect to mean sea level, MSL), and wave  height59 data were obtained 
from publicly available databases. Additionally, there were several periods where instrumentation was down, and 
data are missing (See Supplementary Table S3 online). To overcome these periods of missing data, we primarily 
focused on using time series analysis methods that can accommodate missing data.

The study period partially overlapped with the 2014–2016 El Niño, with an ONI ranging from 0.6 to 2.66. 
Additionally, the study period coincided with the 2015 Pacific hurricane season, the second most active on 
 record6 and the most active within the central Pacific 6. In winter of 2016, big wave events also overlapped with 
the monitoring period.

Data pre‑processing. All analyses were conducted in Python and R. First, data were power transformed by 
adding 1 and taking the square root so that its distribution approximates the normal distribution more closely. 
This was done for all analyses except the cumulative sums (CUSUMs) analysis (described below). After this, 
data were standardized using Eq. (3), where  xi refers to the i-th value in the time series, m is the mean, σ is the 
standard deviation, and  Zi represents the standardized value.

Because hydrological processes and interactions may be more apparent on different time scales or are not 
instantaneous events, we also conducted a second set of analyses using data that were resampled to a 25-h tempo-
ral resolution with short-term tidal fluctuations removed. The tidal signal was removed from the 25-h resampled 
data by calculating a running average over a six-hour interval and subsequently a 25-h interval. The data were 
then resampled into 25-h time intervals using the median value from each period.

Time‑series analyses. Following initial preprocessing of data, we conducted an additive time series 
decomposition using moving averages for each variable using statsmodels60 to derive the trend, seasonal, and 
residual components. From here, we extracted the de-seasoned trend component for further analyses to look at 
longer-term relationships. The Augmented Dickey-Fuller Test was used to confirm stationarity of the decom-
posed components at the 5% level of significance.

Outliers were detected using two different methods—univariate outliers were identified using the 1.5 inter-
quartile range (IQR) rule and multivariate outliers were detected by calculating the Mahalanobis Distance. 
The univariate outliers were not removed from the data, but instead were used to observe individual predictor 
variance and trends. The multivariate outliers were removed from the data and set aside for additional event 
classification and analysis. In most cases, however, there was substantial overlap between outlier date and time 
identified using either method. To detect univariate outliers, the 1.5 IQR rule was used, where a data point is 
considered an outlier if it is less than Q1 – 1.5 * IQR or greater than Q3 + 1.5 * IQR, where Q1 and Q3 refer to 
the first and third quantile, respectively.

Multivariate outliers were detected by calculating the Mahalanobis Distance with the de-seasoned dataset 
using Eq. (4) (MD;61, where the multivariate vector is represented by x , with mean µ , and S is the covariance 
matrix. For each time point, p-values were calculated for the resulting MD by calculating the χ2 value for each 
MD. Outliers were identified when the resulting p-value was less than 0.001.

(1)FSGD =

(A−Aocn−ARa)∗zpl
T + Fatm + Fmix

Agw

(2)Fatm = k(A− αAatm)

(3)Zi =
(xi −m)

σ
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Temporal lags between precipitation, groundwater, and SGD were assessed for the 25-h resampled data using 
the cross-correlation function (CCF) in R. Cross-correlation plots can indicate either lagged or instantaneous 
relationships between two variables. The estimated lag time was determined as the lag with the greatest  R2.

To establish the relative influence of each driver, we conducted a random forest classification to extract feature 
importance for groundwater levels, SGD, and coastal salinity. This analysis was conducted using the scikit-learn 
RandomForestRegressor62 in Python for both 1-h resolution and 25-h resampled data. Feature importance was 
examined during El Niño conditions by constructing separate random forest classifiers for data occurring when 
the ONI was greater than 0.5 (indicating El Niño conditions) and less than 0.5 (indicating El Niño conditions 
were not present).

CUSUMs analysis was used to evaluate driver-response relationships. This method can help resolve variable 
relationships in complex environmental time series data with missing  intervals63. To quantify driver-response 
relationships, data were first standardized using Eq. (2). After data were standardized, driver (precipitation, 
ocean water level, and wave height) and response (groundwater levels, SGD, and salinity) relationships were 
quantified. For each driver-response relationship (e.g., precipitation impact on groundwater levels), driver data 
were first organized in ascending order. Then the CUSUM for the ith observation for the reordered response 
variable,  si, was calculated using Eq. (5).

The standardized data,  zi, have zero mean and unit variance (m = 0, σ = 1). When the  zi value is positive, the 
underlying value,  xi, is greater than the mean. Similarly, when  zi is negative, then  xi is less than the mean. The 
slope of the CUSUM trend is an indication of the sign and magnitude of the  xi values: a steep positive slope is 
the result of large positive deviations of  xi from its mean, and a steep negative slope is the result of large nega-
tive deviations of  xi from its mean. CUSUM analysis can be used to examine relationships between  variables63.

Data availability
Data are available from the Hydroshare Repository at https:// doi. org/ 10. 4211/ hs. 7062d ca5d7 2f42e 193c0 cee9b 
c1cc2 bc.
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