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Abstract

Most of the empirical literature inappropriately applies Hendry’s (1995) mean

lag formula—which he derived for first order autoregressive distributed lag mod-

els under the assumption of a homogeneous long-run equilibrium—to error cor-

rection models that have complex lag structures and lack long-run homogeneity.

We derive an expression for the mean lag in general error correction models

without imposing the assumption of a homogeneous equilibrium. In addition, we

quantify the bias due to the incorrect use of Hendry’s (1995) formula.
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1 Introduction

The mean lag is a summary measure of the lag structure of dynamic models. It

can be used to estimate the average delay in the transmission of shocks, such as the

passthrough of income shocks to consumption, oil price shocks to gas prices, or market

interest rates to retail rates, among others. A large number of empirical studies have re-

sorted to an explicit mean lag formula published by Hendry (1995, p. 215, eq. 6.53). He

derived it for the first order autoregressive distributed lag (ADL(1, 1)) model and the

associated error correction (EC) model under the assumption of a homogeneous equi-

librium relationship. However, the formula is invalid in cases when the lag structure

is more complex or the long-run homogeneity assumption does not hold. Nonethe-

less, we found a number of studies that use the formula inappropriately under these

more general conditions, including Charoenseang and Manakit (2007); Chong and Liu

(2009); De Bondt (2005); De Graeve et al. (2007); Leibrecht and Scharler (2008, 2011);

Leszkiewicz-Kedzior and Welfe (2014); Scholnick (1996), among others.

We fill a gap in the literature by deriving an expression for the mean lag in gen-

eral EC models without imposing the assumption of a homogeneous equilibrium. In

addition, we evaluate the bias of the mean lag estimate arising from inappropriately

imposing long-run homogeneity.

2 General form of the mean lag

In this section we derive the mean lag in a general, non-homogeneous, relationship. A

general autoregressive distributed lag, or ADL(p, q;n), model can be written as

yt = c+
pX

i=1

↵iyt�i +
nX

k=1

qX

j=0

�k,jxk,t�j + ✏t or ↵(L)yt = c+
nX

k=1

�k(L)xk,t + ✏t , (1)

2



where ✏t ⇠ IID, ↵(L) = 1�
Pp

i=1 ↵iL
i and �k(L) =

Pq
j=0 �k,jL

j are lag polynomials,

and n is the number of exogenous variables in the model. Regressors with varying

lag lengths can be readily accommodated at the cost of further notational complexity.

Rearrange equation (1) to obtain the reduced form equation

yt =
c

↵(L)
+

1

↵(L)

nX

k=1

�k(L)xk,t +
✏t

↵(L)
= c⇤ +

nX

k=1

wk(L)xk,t + ut , (2)

where wk(L) =
�k(L)

↵(L)
=

P1
j=1 wk,jL

j. The “weight” associated with lag j of variable

xk, wk,j =
@yt

@xk,t�j
, captures the e↵ect of xk,t�j on yt. Hendry (1995, p. 215) defined

the mean lag as

µk =

P1
j=0 jwk,jP1
j=0 wk,j

=
1

wk(1)


@wk(L)

@L

�

L=1

=
1

wk(1)


�0
k(L)

↵(L)
� �k(L)↵0(L)

↵(L)2

�

L=1

=
1

wk(1)


wk(L)

✓
�0
k(L)

�k(L)
� ↵0(L)

↵(L)

◆�

L=1

=
�0
k(1)

�k(1)
� ↵0(1)

↵(1)
,

(3)

where z0 =
@z

@L
. Note, the mean lag associated with variable xk does not depend on

the coe�cients of the other variables xl, l 6= k.

In equation (3), wk(1) represents the long run impact of xk on y. Consequently,

yt�c⇤�
Pn

k=1 wk(1)xk,t captures a deviation from the long-run equilibrium between the

dependent variable y and regressors x1 . . . xn. Following the steps outlined in Section

2.1 of Banerjee et al. (1993), the ADL(p, q, n) model in equation (1) can be transformed

into an EC(p� 1, q � 1;n) model

�yt =

"
yt�1 � c⇤ �

nX

k=1

!kxk,t�1

#
+

nX

k=1

bk,0�xk,t

+ a(L)�yt +
nX

k=1

bk(L)�xk,t + ✏t ,

(4)
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where  = �↵(1), !k = wk(1), bk,0 = �k,0, a(L) =
Pp�1

j=1 ajL
j with aj = �

Pp
i=j+1 ↵i,

bk(L) =
Pq�1

j=1 bk,jL
j with bk,j = �

Pq
i=j+1 �i, and p � 1 and q � 1 stand for the

maximum lag lengths of �y and �x, respectively. By convention, a term does not

enter the summation if the lower limit exceeds the upper limit. The models described

by equations (1) and (4) are isomorphic.

Example 1. Transformation of the ADL(3, 3; 1) model

yt = c+ ↵1yt�1 + ↵2yt�2 + ↵3yt�3 + �0xt + �1xt�1 + �2xt�2 + �3xt�3 + ✏t , (5)

yields the following EC(2, 2; 1) model

�yt =� (1� ↵1 � ↵2 � ↵3)


yt�1 �

c

1� ↵1 � ↵2 � ↵3
� �0 + �1 + �2 + �3

1� ↵1 � ↵2 � ↵3
xt�1

�

+ �0�xt � (↵2 + ↵3)�yt�1 � ↵3�yt�2 � (�2 + �3)�xt�1 � �3�xt�2 + ✏t ,

(6)

which can be estimated in a simplified form

�yt =  [yt�1 � c⇤ � !xt�1] + b0�xt

+ a1�yt�1 + a2�yt�2 + b1�xt�1 + b2�xt�2 + ✏t .

(7)

The expression in brackets represents the equilibrium error. The coe�cients estimated

in (7) can be mapped back to the ones in (5) and (6) with �0 = b0, �1 = b1 � b0 � !,

�2 = b2 � b1, �3 = �b2, ↵1 = 1 +  + a1, ↵2 = a2 � a1, ↵3 = �a2. Hence, for the

EC(2, 2; 1) model, the mean lag defined in equation (3) takes the following form

µ =
�1 + 2�2 + 3�3

�0 + �1 + �2 + �3
+

↵1 + 2↵2 + 3↵3

1� ↵1 � ↵2 � ↵3

=
! + b0 + b1 + b2

!
� 1 + � a1 � a2



=
!(a1 + a2 � 1) + b0 + b1 + b2

!
.

(8)

4



If  6= 0, !k 6= 0, then consistent estimation of the parameters ✓ = (,!, a1, a2, b0, b1, b2)0

in equation (7) allows us to obtain a consistent estimate of the mean lag, µ̂ = µ(✓̂),

and its variance V ar(µ̂) =
@µ(✓̂)

@✓0
V ar(✓̂)

@µ(✓̂)

@✓
, where V ar(✓̂) is the covariance matrix

of coe�cients estimated in equation (7).

Before generalizing this result to an EC(p� 1, q � 1;n) model

�yt = 

"
yt�1 � c⇤ �

nX

k=1

!kxk,t�1

#
+

p�1X

i=1

ai�yt�i +
nX

k=1

q�1X

j=0

bk,j�xk,t�j + ✏t , (9)

we make the following set of assumptions:

Assumption 1. The variables y, x1 . . . , xn entering models (1) and (9) are either

jointly stationary, or cointegrated with a stationary equilibrium error yt�c⇤�
Pn

k=1 !kxk,t.

Assumption 2. The error in equations (1) and (9), ✏t, is independently and identically

distributed and is independent of the variables x1 . . . , xn.

Assumption 3. The parameters in equation (9), ✓ = (,!1 . . .!n, a1 . . . ap�1, b1,0 . . .

. . . b1,q�1 . . . bn,0 . . . bn,q�1)0, are estimated consistently with an estimator that has an

asymptotically normal distribution
p
T (✓̂ � ✓)

d�! N (0, V ar(✓)).

Assumption 4.  6= 0, !k 6= 0 for k 2 {1 . . . n}. The mean lag, µk(✓), is a continuous

function of ✓ and is continuously di↵erentiable with respect to ✓.

Proposition 1. Under Assumptions 1-4 the mean lag estimator

µ̂k = µk(✓̂) =
!̂k(

Pp�1
i=1 âi � 1) +

Pq�1
j=0 b̂k,j

̂!̂k
, (10)

is consistent and asymptotically normally distributed

p
T (µk(✓̂)� µk(✓))

d�! N

✓
0,

@µk(✓)

@✓0
V ar(✓)

@µk(✓)

@✓

◆
. (11)
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Proposition 1 extends the results obtained in Example 1 to a general EC(p� 1, q�

1;n) model. The details of the proof are provided in an Online Supplement on the first

author’s homepage.

Remark 1.1. If the variables y, x1 . . . , xn are cointegrated, then the elements of the

cointegrating vector, ! = (!1 . . .!n)0, are estimated super-consistently:
p
T (!̂ � !) =

op(1). As a result, the V ar(✓) components associated with the cointegrating vector,

!, converge to zero and do not contribute to the asymptotic variance of the mean lag

estimator in (11). The Supplement contains a more detailed exposition of this issue.

Perhaps due to previous unavailability of the formula presented in equation (10),

some researchers have ignored the lag structure of their EC models when estimating

the mean lag (see for example De Graeve et al., 2007; Leibrecht and Scharler, 2011).

Corollary 1.1. For the frequently used ADL(1, 1;n) and the associated EC(0, 0;n)

model, expression (10) simplifies to

µk(✓̂) =
b̂k,0 � !̂k

̂!̂k
. (12)

3 Mean lag under long-run homogeneity

An error correction model is considered to be homogeneous if, for each k, the xk and

y variables move one-for-one in equilibrium. Homogeneity implies !k = wk(1) = 1 or

↵(1) = �k(1), leading to a special form of the mean lag

µ̄k =
�0
k(1)� ↵0(1)

↵(1)
=

�0
k(1)� ↵0(1)

�k(1)
. (13)
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Table 1: Impact of Imposing Long-Run Homogeneity in the Literature

Study Item µ̄(✓̂) µ(✓̂) Relative Bias

A
Overnight 1.58 1.24 27%
Maturity over 2 years 0.97 0.50 94%

B
IB 0.26 0.14 78%
TD6-12 7.09 2.63 169%

C Footnote 8 2.90 2.20 39%

Note: Illustration of bias in the mean lag estimate due to an inappropriate assumption of
long-run homogeneity. Panels (A)-(C) refer to the following published results: (A) Table 8 in
De Bondt (2005), (B) Table 6 in Charoenseang and Manakit (2007), (C) page 501 in Leibrecht
and Scharler (2008). Each of these studies incorrectly used µ̄(✓̂) defined in equation (15) in
place of µ(✓̂) defined in equation (12) to estimate the mean lag.

Corollary 1.2. The mean lag estimator associated with variable xk in a homogeneous

EC(p� 1, q � 1;n) model takes the form

µ̄k(✓̂) =

Pp�1
i=1 âi � 1 +

Pq�1
j=0 b̂k,j

̂
, (14)

which simplifies to

µ̄k(✓̂) =
b̂k,0 � 1

̂
. (15)

for a homogeneous EC(0, 0;n) model.

Expression (15) is equivalent to the formula derived by Hendry (1995, p. 215, eq. 6.53).

Although this formula does not hold for general, non-homogeneous, relationships be-

tween xk and y, it has been inappropriately used in place of equation (12) by several

researchers. The list of studies that relied on equation (15) despite non-unity !k coef-

ficients includes Charoenseang and Manakit (2007); Chong and Liu (2009); De Bondt

(2005); De Graeve et al. (2007); Leibrecht and Scharler (2008, 2011); Leszkiewicz-

Kedzior and Welfe (2014); Scholnick (1996), among others. In Table 1, we illustrate
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Figure 1: Bias and relative bias of the mean lag estimate arising from an inappropri-
ate assumption of homogeneity in an EC(p � 1, q � 1;n) model with

Pp�1
i=1 ai = 0.6,Pq�1

j=0 bk,j = 0.2 and  = �0.4.

the impact of imposing long-run homogeneity in some of these studies.

Expressions (10) and (14) allow us to quantify the bias in the mean lag estimate

arising from an inappropriate assumption of homogeneity. The bias

µ̄k(✓)� µk(✓) =
(!k � 1)

Pq�1
j=0 bk,j

!k

(16)

and the relative bias

µ̄k(✓)� µk(✓)

µk(✓)
=

(!k � 1)
Pq�1

j=0 bk,j

!k(
Pp�1

i=1 ai � 1) +
Pq�1

j=0 bk,j
(17)

vanish as !k ! 1, but diverge otherwise. Figure 1 illustrates the magnitude of the bias

and relative bias for !k 2 (�2, 2),
Pp�1

i=1 ai = 0.6,
Pq�1

j=0 bk,j = 0.2, and  = �0.4.
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4 Concluding remarks

Rsearchers have been inappropriately using Hendry’s (1995) mean lag formula—which

he derived for homogeneous EC(0, 0, 1) models—in more complex settings. We fill a

gap in the literature by deriving an expression for the mean lag in general EC models,

and show that using the incorrect formula can have a sizable impact on the estimated

delay in the transmission of shocks. The ADL and EC models discussed above can

be viewed as components of vector autoregressive (V AR) and vector error correction

(V EC) models, respectively. Consequently, the presented results are also valid for the

mean lags of variables in individual equations of V AR and V EC models.
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Online Supplement

A.1 Proof of Proposition 1

We first outline the steps required to obtain the mean lag estimator defined in equation

(10) and then derive its asymptotic distribution.

To transform the ADL(p, q;n) model in equation (1) into the EC(p � 1, q � 1;n)

model in equation (9), carry out the following operations:

• subtract yt�1 from both sides of equation (1),

• for each k 2 {1 . . . n} add and subtract �k,0xk,t�1 on the right hand side of

equation (1),

• add and subtract
Pp�1

i=1 (
Pp

j=i+1 ↵j)yt�i on the right hand side of equation (1),

• for each k 2 {1 . . . n} add and subtract
Pq�1

i=1 (
Pq

j=i+1 �k,j)xk,t�i on the right hand

side of equation (1).
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In the resulting equation

yt�yt�1= c �yt�1 +↵1yt�1 +↵2yt�1 +↵3yt�1 . . . +↵pyt�1

�↵2yt�1 �↵3yt�1 . . . �↵pyt�1

+↵2yt�2 +↵3yt�2 . . . +↵pyt�2

�↵3yt�2 . . . �↵pyt�2

. . .

+↵p�1yt�(p�1) +↵pyt�(p�1)

�↵pyt�(p�1)

+↵pyt�p

+�1,0x1,t+�1,1x1,t�1+�1,0x1,t�1+�1,2x1,t�1 +�1,3x1,t�1 . . . +�1,px1,t�1

��1,2x1,t�1 ��1,3x1,t�1 . . . ��1,px1,t�1

+�1,2x1,t�2 +�1,3x1,t�2 . . . +�1,px1,t�2

��1,3x1,t�2 . . . ��1,px1,t�2

. . .

+�1,p�1x1,t�(p�1) +�1,px1,t�(p�1)

��1,px1,t�(p�1)

+�1,px1,t�p

. . .

+�n,p�1xn,t�(p�1) +�n,pxn,t�(p�1)

��n,pxn,t�(p�1)

+�n,pxn,t�p

+✏t

substitute �yt and �xt for yt � yt�1 and xt � xt�1, respectively, and group items to

obtain equation (9) with
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• aj = �
Pp

i=j+1 ↵i for j 2 {1 . . . p� 1},

• b0 = �0,

• bk,j = �
Pq

i=j+1 �k,i for k 2 {1 . . . n} and j 2 {1 . . . q � 1},

•  = �(1�
Pp

i=1 ↵i),

• !k =

Pq
i=0 �k,i

1�
Pp

i=1 ↵i
= �

Pq
i=0 �k,i


for k 2 {1 . . . n},

• c⇤ =
c

1�
Pp

i=1 ↵i
= � c


.

The parameters of the EC(p� 1, q � 1;n) model in equation (9) can be mapped back

to the parameters of the ADL(p, q;n) model in equation (1) using

• ↵1 = 1 + + a1,

• ↵i = ai � ai�1 for i 2 {2 . . . q � 1},

• ↵p = �ap�1,

• �k,0 = b0 for k 2 {1 . . . n},

• �k,1 = �!+ b1 � b0 for k 2 {1 . . . n},

• �k,i = bk,i � bk,i�1 for k 2 {1 . . . n} and i 2 {2 . . . q � 1},

• �k,q = �bk,q�1 for k 2 {1 . . . n} .

Substituting these expressions into the definition of the mean lag in equation (3) yields

the following formula for the mean lag in EC(p� 1, q � 1;n) models

µk =

Pq
i=0 i�k,iPq
i=0 �k,i

+

Pp
i=1 i↵iPp
i=1 ↵i

=
!k(

Pp�1
i=1 ai � 1) +

Pq�1
j=0 bk,j

!k
.
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Under Assumptions 3 and 4, the continuous mapping theorem implies that the mean

lag estimator in equation (10) is consistent: µk(✓̂)
p�! µk(✓). To show asymptotic

normality, we apply the mean value theorem to a Taylor expansion of µk

µk(✓̂) = µk(✓) +
@µk(✓̄)

@✓0
(✓̂ � ✓) ,

where ✓̄ = �✓̂+(1��)✓ with 0  �  1. Multiplying both sides by
p
T and rearranging

yields

p
T (µk(✓̂)� µk(✓)) =

@µk(✓̄)

@✓0

p
T (✓̂ � ✓) .

Since ✓̄ lies on the line segment between ✓̂ and ✓, and since ✓̂
p�! ✓, we have ✓̄

p�! ✓.

Consequently, under Assumption 4, the continuous mapping theorem implies
@µk(✓̄)

@✓0
p�! @µk(✓)

@✓0
. Finally, in conjunction with Assumption 3, the continuous map-

ping theorem implies

p
T (µk(✓̂)� µk(✓))

d�! @µk(✓)

@✓0

p
T (✓̂ � ✓) ⇠ N

✓
0,

@µk(✓)

@✓0
V ar(✓)

@µk(✓)

@✓

◆
.

A.2 Details underlying Remark 1.1

Engle and Granger (1987) showed that if the variables y, x1 . . . , xn are I(1) with an

I(0) equilibrium error yt � c⇤ �
Pn

k=1 !kxk,t, then the elements of the cointegrating

vector, ! = (!1 . . .!n)0, are estimated super-consistently:
p
T (!̂ � !) = op(1). As a

result, the mean value expansion of µk around ✓ consists of two components converging

at di↵erent rates

p
T (µk(✓̂)� µk(✓)) =

@µk

@✓0r!

����
✓̄

p
T (✓̂r! � ✓r!) +

@µk

@!0

����
✓̄

p
T (!̂ � !) = Op(1) + op(1) ,

14



where ✓r! refers to the complement of ! in ✓, and ✓̄ = �✓̂ + (1� �)✓ with 0  �  1.

Therefore, under Assumption 4, the continuous mapping theorem implies that the

asymptotic distribution of the mean lag estimator is not a↵ected by those components

of V ar(✓) that are associated with the cointegrating vector, !:

p
T (µk(✓̂)� µk(✓))

d�! @µk(✓)

@✓0r!

p
T (✓̂r! � ✓r!) ⇠ N

✓
0,

@µk(✓)

@✓0r!

V ar(✓r!)
@µk(✓)

@✓r!

◆
.
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