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Abstract

We study indirect estimation methods with a special emphasis on issues related to continuous

time models of the interest rate. Using a highly persistent discrete AR(1) model, Duffee and

Stanton (2008) (DS) argued for the superiority of indirect inference (II) over the efficient method

of moments (EMM) for estimating term structure models. We extend the work of DS by

conducting a thorough comparison of analytic and simulation-based EMM and II estimators

in the context of continuous time models of the interest rate, and we confront issues that are

specific to this setting, such as the choice of an auxiliary model and the relative importance

of discretization bias and finite sample bias. We arrive at a different conclusion than DS by

considering an alternative formulation of the EMM estimator that performs better than the

original one, and overall its behavior closely matches that of II. We also show that the excessive

bias of the EMM estimator is particular to the over-identified setting considered by DS.
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1 Introduction

Indirect estimators take advantage of a simplified auxiliary model that is easier to estimate than

the true structural model. The estimation consists of two stages. First, an auxiliary statistic is

calculated from the observed data. Then an analytical or simulated mapping of the structural

parameter to the auxiliary statistic is used to calibrate the structural parameter. Depending on the

formulation of the auxiliary statistic used in their objective function, the indirect estimators are

usually placed into one of two categories: efficient method of moments (EMM) made popular by

Gallant and Tauchen (1996), or indirect inference (II) originally proposed by Smith Jr (1993) and

Gouriéroux et al. (1993). The former method is based on the auxiliary score, and the latter one

is based on the binding function. In this paper, we also consider an alternative EMM-2 estimator

(Fuleky and Zivot, 2010) that uses the the binding function and through it inherits some of the

features of the II estimator.

II and EMM were originally developed with the intent to enable parameter estimation in models

with intractable likelihood functions, such as diffusions. Both estimators have been independently

analyzed in continuous time settings: Andersen and Lund (1997) and Zhou (2001) employed EMM

to estimate some single factor interest rate processes, and Gouriéroux et al. (1993) and Broze

et al. (1995) gave examples on estimating diffusions with II. However, Gallant and Tauchen (1996)

and later Jiang and Turnbull (2004) argued that both estimators can be accommodated by a

unifying framework for indirect estimation procedures. To our knowledge there has been no direct

comparison of the methods in a continuous time setting, but Duffee and Stanton (2008) (DS)

compared EMM and II by estimating a discrete first order autoregressive (AR(1)) model. DS found

that EMM is extremely biased, and that despite its wide confidence intervals, EMM has a high

empirical rejection rate in tests. They attribute this latter result to EMM having an asymmetric

criterion function, which was also documented by Tauchen (1998). 1

We extend the study of DS to the estimation of continuous time models of the interest rate,

and add EMM-2 to the line-up of estimators that we compare. A one factor model of the interest

rate can be written as a continuous time stochastic process of the following form

Fθ : dy = α(y, θ)dt+ β(y, θ)dW , dW ∼ iid N(0, dt) , (1)

where W is a standard Brownian motion, α(y, θ) is a drift function, and β(y, θ) is a diffusion

function. If the model is correctly specified and its likelihood function is tractable, the structural

θ parameters can be estimated by maximum likelihood. However, as Ball and Torous (1996) and

1Both, DS and Tauchen (1998), showed that the asymmetry of the criterion function is caused by the presence
of the population variance in the EMM criterion function, which puts a large penalty on the structural parameter
close to the boundary of stationarity. While this property helps to avoid explosive parameter estimates, it causes
the confidence interval to cover only little of the structural parameter space between the point estimate and the
boundary. In contrast, the II objective function does not contain the population variance and it remains symmetric
around the point estimate. The difference in the shapes of the objective functions implies that if the true parameter
value falls into the interval between the point estimate and the boundary of stability, the EMM estimate is rejected
with much higher probability in tests than the II estimate. This was one of DS’s main critiques of EMM.
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Phillips and Yu (2007) show, the ML estimates of the drift parameters have a strong finite sample

bias in highly persistent processes. This finite sample bias is similar to the one observed originally

by Hurwicz (1950) and Marriott and Pope (1954) in persistent autoregressive models.

In cases when the likelihood function of (1) does not have a closed-form analytic expression, its

discrete approximation

Fµ : yt = yt−∆ + α(yt−∆, µ)∆ + β(yt−∆, µ)
√

∆ εt, εt ∼ iid N(0, 1) , (2)

is usually estimated, see Chan et al. (1992) and Broze et al. (1995). But Lo (1988) points out that

this naive estimator is mis-specified for θ and gives asymptotically biased estimates. Nevertheless,

the crude Euler discretization in (2) represents a natural choice of an auxiliary model which can

be estimated using least squares techniques. While the µ parameter estimates are asymptotically

biased for θ, the indirect methods implicitly correct this discretization bias of the naive estimator

by ultimately estimating the underlying structural model.

In addition, Gouriéroux et al. (2000) and Gouriéroux et al. (2006) indicate that the II estimator

can deliver further finite sample bias correction beyond the asymptotic bias correction if it uses a

finite sample binding function. Because this finite sample bias correcting property hinges on the use

of the binding function, it is not present in the original EMM estimator, but it becomes available

in EMM-2. Thus the EMM-2 estimator can be employed to mitigate both sources of bias that are

affecting the naive estimator of diffusion parameters.

The crude Euler discretization in (2) implies a just identified indirect estimator with the same

number of auxiliary parameters as there are structural ones. DS’s critique of EMM vis-a-vis II was

partially based on results that were specific to an over-identified setting, and we show that over-

identification introduces additional bias beyond the discretization and finite sample biases observed

in a just identified model. Gouriéroux and Monfort (1996) show that in just-identified models the

EMM and II estimates are identical, which counters some of DS’s criticism of EMM. The rest of

DS’s criticism can be addressed by an alternative formulation of the EMM estimator: the EMM-2

estimator is calibrated, just like II, via the binding function. Therefore, it is void of the population

variance and the explosive behavior close to the non-sationary region. Consequently, the EMM-2

estimator not only gives similar point estimates as II, but performs comparably in tests too.

The main contribution of this study to the existing literature is a thorough analysis of the finite

sample properties of EMM, EMM-2 and II estimators in a continuous time setting. In Section 2,

I give an overview of indirect estimators and introduce the EMM-2 estimator. In Section ??, I

describe some practical considerations related to indirect estimators, and in Section 3, I illustrate

some of the issues related to continuous time models. In Sections 4 and ??, I compare the finite

sample performance of EMM, EMM-2, and II via a Monte Carlo study: Section 4 deals with

parameter estimation in an OU process, and Section ?? deals with the distribution of corresponding

bond prices. Section 5 concludes.
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2 Indirect Estimators Defined

This section is laying the groundwork for the remainder of the paper. Following Gouriéroux and

Monfort (1996), we give a brief overview of the existing analytical and simulation based indirect

estimation methods. In addition, we consider an alternative formulation of the EMM estimator

and derive its asymptotic distribution.

2.1 Components of Indirect Estimators

There are three components present in all indirect estimators: (1) the true structural model whose

parameters are one’s ultimate interest, (2) its auxiliary approximation, and (3) the binding function

connecting these two models.

2.1.1 Structural Model

Assume that a sample of n observations {yt}t=∆,...,n∆=T with observation interval ∆, are gen-

erated from a strictly stationary and ergodic probability model Fθ, θ ∈ Rp, with joint density

f(y−m∆, ..., y−∆, y0; θ). This is the structural model. For example, a one factor model of the inter-

est rate can be written as a continuous time stochastic process of the form given in (1). It may

be hard or impossible to directly estimate the parameters of the structural model. However, the

ability to generate quasi-samples from the structural model is a prerequisite for simulation based

inference. If the continuous time model does not have a closed form solution, then simulations can

be generated from its discrete approximation, such as the weak order 1 fine Euler discretization, or

the strong order 1 Milshtein scheme, and others.

2.1.2 Auxiliary Model

Indirect estimators were originally developed with the intent to enable parameter estimation in

models with intractable likelihood functions (Gallant and Tauchen, 1996; Gouriéroux et al., 1993).

When the joint density of the true process is unknown, it is assumed that an approximation, or

so called auxiliary model, can be estimated instead. The auxiliary model F̃µ is indexed by the

parameter µ ∈ Rr, with r ≥ p.
The natural choice for the auxiliary model of the diffusion in (1) is its crude Euler discretization

(2), which implies just-identified estimators, that is, r = p. Over-identification only occurs if

restrictions are imposed on the structural parmeters. This choice differs from that of Andersen

and Lund (1997) and Gallant and Tauchen (1997) who used highly parametrized over-identified

semi non-parametric (SNP) auxiliary models. They argued for this highly parameterized auxiliary

model for efficiency reasons, but Phillips and Yu (2007) show that the naive estimator of discretized

diffusions compares well with the maximum likelihood estimator, and the crude Euler discretization

gives a sufficiently good description of the observed data.
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Denote by µ̃ the auxiliary estimator, or, the estimator of the auxiliary parameter µ calculated

with the original sample {yt}

µ̃ = arg max
µ

f̃n ({yt}t=∆,...,n∆, µ) , (3)

where f̃n is the sample objective function associated with the auxiliary model F̃µ. Because the

auxiliary model is assumed to have a tractable conditional likelihood function, f̃n can be written

as

f̃n ({yt}t=∆,...,n∆, µ) =
1

n−m

n∆∑
t=(m+1)∆

f̃(yt;xt−∆, µ), (4)

where f̃(yt;xt−∆, µ) is the log density of yt for the model F̃µ conditioned on xt−∆ = {yt−m∆, ..., yt−∆},
and µ can be estimated by conditional maximum likelihood. The derivative of the log-density

f̃(yt;xt−∆, µ) with respect to the auxiliary parameter µ is given by the score vector

g̃(yt;xt−∆, µ) =
∂f̃(yt;xt−∆, µ)

∂µ
(5)

While the direct, or naive, estimates of the auxiliary µ parameter will be asymptotically biased

for θ, the indirect methods implicitly correct this discretization bias of the naive estimator, by

ultimately estimating the underlying structural model as opposed to its discrete approximation.

2.1.3 Binding Function

Indirect estimators use the auxiliary model information summarized by some auxiliary statistic,

such as the auxiliary score or the auxiliary estimates, to obtain estimates of the structural pa-

rameters θ. The connection between the two sets of parameters is given by a mapping from the

structural parameters to the auxiliary parameters, the so-called binding function, µ(θ), which is

the functional solution of the asymptotic optimization problem

µ(θ) = arg max
µ

lim
n→∞

f̃n ({yt}t=∆,...,n∆, µ) = arg max
µ

EFθ [f̃(y0;x−∆, µ)], (6)

where f̃(y0;x−∆, µ) denotes the log density of y0 given x−∆ for the model F̃µ, and EFθ [·] means

that the expectation is taken with respect to Fθ. In order for µ(θ) to define a unique mapping it is

assumed that µ(θ) is one-to-one and that ∂µ(θ)
∂θ′ has full column rank.

As discussed in Gouriéroux and Monfort (1996), indirect estimators differ in how they use

(6) to define an estimating equation. The first type, typically called the indirect inference (II)

estimator, originally proposed by Smith Jr (1993) and Gouriéroux et al. (1993), finds θ to minimize

the distance between µ(θ) and µ̃. When the model is just-identified (r = p), the indirect estimator

solves µ̃− µ(θ) = 0, in particular, θ̂ = µ−1(µ̃). Thus, θ̂ sets the value of the binding function equal

to that of the auxiliary estimate.

The second type of indirect estimator, made popular by Gallant and Tauchen (1996) and typ-
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ically called the efficient method of moments (EMM), finds θ to satisfy the first order conditions

associated with (6) when evaluated at µ̃. Gouriéroux and Monfort (1996) and Jiang and Turnbull

(2004) point out that for a given auxiliary model F̃µ, EMM can be looked at as II based on the

auxiliary score. EMM gets its name from the fact that if F̃µ is a very good approximation to Fθ

then the score associated with F̃µ constitutes the moments to use for efficient estimation of θ.

The EMM-2 estimator takes an alternative route for calibration, and evaluates the score of the

auxiliary estimator (5) with the binding function (6). It is asymptotically equivalent to the original

EMM estimator, but behaves differently in finite samples. The next subsections summarize the

various analytic and simulation based indirect estimators.

2.2 Analytic Estimators

Analytic, or non-simulation based, versions of EMM and II can be defined if µ(θ) is known, or if

the expected score associated with F̃µ can be evaluated analytically under Fθ.

2.2.1 EMM

The analytic EMM estimators make use of the population moment condition

EFθ [g̃(y0;x−∆, µ(θ))] = 0, (7)

based on (6). The analytic EMM estimator of Gallant and Tauchen (1996), which we call EN1,

requires an analytic representation for EFθ [g̃(y0;x−∆, µ̃)], and is defined as

θ̂EN1(Σ̃n) = arg min
θ
JEN1(θ, Σ̃n) (8)

= arg min
θ

EFθ [g̃(y0;x−∆, µ̃)]′ Σ̃nEFθ [g̃(y0;x−∆, µ̃)] ,

where Σ̃n is a positive definite and symmetric weight matrix which may depend on the data through

the auxiliary model. If µ̃
p→ µ(θ) then EFθ [g̃(y0;x−∆, µ̃)]

p→ EFθ [g̃(y0;x−∆, µ(θ))] = 0.

2.2.2 EMM-2

We consider a second type of analytic EMM estimator, EN2, that requires a known analytic repre-

sentation for the binding function µ(θ). This estimator is a generalized method of moments (GMM)

estimator that makes use of the population moment condition (7) and is defined as

θ̂EN2(Σ̃n) = arg min
θ
JEN2(θ, Σ̃n) = arg min

θ
g̃n(θ)′Σ̃ng̃n(θ), (9)

where

g̃n(θ) =
1

n−m

n∆∑
t=(m+1)∆

∂f̃(yt;xt−∆, µ(θ))

∂µ
(10)
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is the sample score evaluated at µ(θ). Under Fθ it follows from the ergodic theorem that g̃n(θ)
p→

EFθ [g̃(y0;x−∆, µ(θ))] = 0 so that θ̂EN2 is asymptotically equivalent to θ̂EN1 (Fuleky and Zivot,

2010).

The optimal EMM and EMM-2 estimators use the weight matrix Σ̃∗
p→ I−1, where

I = lim
n→∞

varFθ(
√
ng̃n(θ)), (11)

is the asymptotic variance of the sample score evaluated at µ(θ). As discussed in Gallant and

Tauchen (1996), if F̃µ is a very good approximation to Fθ, then a consistent estimate of I based

on the auxiliary model is

Ĩn =
1

n−m

n∆∑
t=(m+1)∆

g̃(yt;xt−∆, µ̃)g̃(yt;xt−∆, µ̃)′ . (12)

Otherwise, a heteroskedasticity and autocorrelation consistent estimator should be used.

2.2.3 Indirect Inference

The analytic II estimator, IN, is a classical minimum distance estimator of the form

θ̂IN(Ω̃n) = arg min
θ
J IN(θ, Ω̃n) = arg min

θ
(µ̃− µ(θ))′Ω̃n(µ̃− µ(θ)), (13)

where Ω̃n is a positive definite and symmetric weight matrix which may depend on the data through

the auxiliary model. DS call (13) the asymptotic II estimator.

The optimal II estimator uses the weight matrix Ω̃∗
p→MµI−1Mµ, where

Mµ = EFθ

[
∂2f̃(y0;x−∆, µ(θ))

∂µ∂µ′

]
. (14)

An estimate of the optimal weight matrix is Ω̃∗n = H̃nĨ−1
n H̃n, where

H̃n =
1

n−m

n∆∑
t=(m+1)∆

∂2f̃(yt;xt−∆, µ̃)

∂µ∂µ′
, (15)

is the sample Hessian associated with F̃µ, and Ĩn is defined in (12). With an estimate of the efficient

weight matrix, the II objective function has the form

J IN(θ, Ω̃∗n) =
[
H̃n(µ̃− µ(θ))

]′
Ĩ−1
n

[
H̃n(µ̃− µ(θ))

]
, (16)

which is similar in form to the efficient EMM objective functions JEN1(θ, Σ̃∗n) and JEN2(θ, Σ̃∗n). In

fact, the EN1 and EN2 estimators can be looked at as II estimators that are calibrated by using

the score, instead of the distance between the auxiliary estimate and the binding function.
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2.3 Simulation Based Estimators

If the analytic forms of µ(θ) and EFθ [g̃(y0;x−∆, µ̃)] are not known then the analytic EMM and II

estimators are not feasible. If it is possible to simulate from Fθ for a fixed θ, then simulation-based

versions of (8), (9) and (13) can be solved to obtain the simulation-based EMM and II estimators

of θ.

Simulated observations {yt(θ)} from Fθ to be used in estimation can be drawn in two ways

(Gouriéroux and Monfort, 1996). First, a long pseudo-data series of size S · n is simulated giving

{yt(θ)}t=∆,...,Sn∆, S ≥ 1. (17)

Second, S pseudo-data series, each of size n, are simulated giving

{yst (θ)}t=∆,...,n∆, s = 1, . . . , S, S ≥ 1 . (18)

2.3.1 EMM Estimators

Corresponding to the two non-simulation based EMM estimators (8) and (9) there are two simulation-

based EMM estimators. The simulation-based EMM estimator corresponding to EN1 in (8) uses

simulations to approximate the expected value of the score. Based on the two types of simulated

samples (17) and (18), EFθ [g̃(y0;x−∆, µ̃)] can be approximated using

g̃Sn(θ, µ̃) =
1

S(n−m)

Sn∆∑
t=(m+1)∆

∂f̃ (yt(θ);xt−∆(θ), µ̃ )

∂µ
,

g̃
S
n(θ, µ̃) =

1

S(n−m)

S∑
s=1

n∆∑
t=(m+1)∆

∂f̃
(
yst (θ);x

s
t−∆(θ), µ̃

)
∂µ

.

The simulation-based EMM estimators corresponding to (8) are then

θ̂EL1
S (Σ̃n) = arg min

θ
JEL1
S (θ, Σ̃n) = arg min

θ
g̃Sn(θ, µ̃)′Σ̃ng̃Sn(θ, µ̃) , (19)

θ̂EA1
S (Σ̃n) = arg min

θ
JEA1
S (θ, Σ̃n) = arg min

θ
g̃
S
n(θ, µ̃)′Σ̃ng̃

S
n(θ, µ̃) . (20)

The L superscript in (19) indicates that the EMM estimator is exploiting a long series simulation

principle, and the A superscript in (20) indicates that the estimator is exploiting an aggregate score

simulation principle. The EL1 estimator is implemented in Gallant and Tauchen (2004) and is used

in most empirical applications of EMM in macroeconomics and finance.

2.3.2 EMM-2 Estimators

The simulation-based EMM-2 estimator corresponding to EN2 in (9) uses simulations to ap-

proximate the binding function µ(θ) in the sample score g̃n(θ) = 1
n−m

∑n∆
t=(m+1)∆

∂f̃(yt;xt−∆,µ(θ))
∂µ .
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Gouriéroux and Monfort (1996) show how the binding function can be approximated in three dif-

ferent ways. In the first approximation, a long pseudo-data series as in (17) is simulated and µ(θ)

is estimated using:

µ̃L
S(θ) = argmax

µ
f̃Sn ({yt(θ)}t=∆,...,Sn∆, µ) . (21)

In the second and third approximations, S pseudo-data series of size n are simulated as in (18) and

µ(θ) is estimated using

µ̃A
S (θ) = arg max

µ

1

S

S∑
s=1

f̃n ({yst (θ)}t=∆,...,n∆, µ) . (22)

µ̃M
S (θ) =

1

S

S∑
s=1

arg max
µ

f̃n ({yst (θ)}t=∆,...,n∆, µ) , (23)

The M superscript indicates that µ(θ) is approximated using the mean of auxiliary estimators.

The approximation µ̃M
S (θ) is computationally expensive as it requires S optimizations, whereas the

approximations µ̃L
S(θ) and µ̃A

S (θ) only require a single optimization. The higher computation cost

associated with µ̃M
S (θ) may be justified, however, due to its bias correction properties as shown by

Gouriéroux et al. (2000) and Gouriéroux et al. (2006).

The simulation-based EMM-2 estimators corresponding to (9) which use (21), (23) or (22) are

defined by

θ̂Ej2
S (Σ̃n) = arg min

θ
JEj2(θ, Σ̃n) = arg min

θ
g̃j
n(θ)′Σ̃ng̃

j
n(θ), (24)

where

g̃j
n(θ) =

1

n−m

n∆∑
t=(m+1)∆

g̃(yt;xt−∆, µ̃
j
S(θ)), j = L,M,A. (25)

is the sample score evaluated at the simulated binding function. To my knowledge, these simulation-

based EMM estimators have not been considered before.

The EL2 or EA2 estimators are asymptotically equivalent to but computationally more expen-

sive than the EL1 or EA1 estimators because the binding function must be re-estimated at each

iteration of the optimization in (24). As I will demonstrate in Section ??, the finite sample behavior

of the estimators defined in (24) can be substantially different from those defined in (19) and (20)

especially for highly persistent data.

2.3.3 II Estimators

For simulation-based II, simulations, as in (21)-(23), are used to approximate µ(θ) in (13). The

simulation-based II estimators are defined by

θ̂Ij
S (Ω̃n) = arg min

θ
JIj
S(θ, Ω̃n) = arg min

θ

(
µ̃− µ̃j

S(θ)
)′

Ω̃n

(
µ̃− µ̃j

S(θ)
)
, j = L,M,A. (26)

The IM estimator is most commonly used in practice, and DS called it the finite-sample II estimator.
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2.4 Asymptotic Properties

The asymptotic properties of EL1, EA1, IL, IA, and IM estimators are derived in Gouriéroux et al.

(1993), Gouriéroux and Monfort (1996) and Gallant and Tauchen (1996). The results for the EL2

estimators are given in the appendix to this chapter. Under regularity conditions described in

Gouriéroux and Monfort (1996), the optimal analytic EMM and II estimators are consistent and

asymptotically normally distributed with asymptotic variance matrices given by

W ∗EN1 = W ∗EN2 =
(
M ′θΣ̃

∗Mθ

)−1
, (27)

W ∗IN =

(
∂µ(θ)′

∂θ
Ω̃∗
∂µ(θ)

∂θ′

)−1

, (28)

where

Mθ =
{ ∂

∂θ′
EFθ

[
∂f̃(y0;x−∆, µ)

∂µ

]}∣∣∣
µ=µ(θ)

. (29)

For fixed S, the simulation-based EMM and II estimators are also consistent and asymptotically

normally distributed with asymptotic variance matrices given (27) and (28), respectively, scaled by

(1 + 1/S). Gouriéroux and Monfort (1996) derived the result

∂µ(θ)

∂θ′
= −M−1

µ Mθ, (30)

from which it follows that (27) and (28) are equal and the optimal EMM, EMM-2, and II estimators

are asymptotically equivalent.

2.5 Classical Tests

Consider a hypothesis defined by H0 : q(θ) = η0 for a smooth function q from Rp to Rp1 . The

LR-type test statistics based on the analytical EMM and II estimators are

LRENk(η0) = n
[
JENk(θ̂Ek(η0, Σ̃

∗
n), Σ̃∗n)− JENk(θ̂Ek(Σ̃∗n), Σ̃∗n)

]
, k = 1, 2 (31)

LRIN(η0) = n
[
JIN(θ̂IN(η0, Ω̃

∗
n), Ω̃∗n)− JIN(θ̂INΩ̃∗n), Ω̃∗n)

]
, (32)

where θ̂(η0, Σ̃
∗
n) and θ̂(η0, Ω̃

∗
n) denote the optimal EMM and II estimators constrained by H0 :

q(θ) = η0, respectively. Under H0 : q(θ) = η0, these statistics are asymptotically distributed

chi-square with p1 degrees of freedom.

The LR-type test statistics for the simulation-based EMM and II estimators must be scaled by

S/(S + 1) to account for the increase in variability due to the simulations. That is, LREjk
S (η0) =

S
S+1LRENk(η0)(j = L,M,A; k = 1, 2) and LRIj

S(η0) = S
S+1LRIN(η0)(j = L,M,A). For fixed S, these

statistics are also asymptotically distributed chi-square with p1 degrees of freedom.

Confidence sets for individual elements θj may be constructed by defining q(θ) = θ0
j and invert-

ing the LR-type statistics using a χ2(1) critical value.
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When the auxiliary model F̃µ has more parameters than the true model Fθ, the scaled opti-

mized value of the optimal EMM and II objective functions can be used to test the validity of the

overidentifying restrictions imposed by the auxiliary model. Under the null of correct specification,

these statistics are asymptotically distributed chi-square with r − p degrees of freedom. For the

non-simulation based estimators the overidentification test statistics are

nJENk(θ̂Ek(Σ̃∗n), Σ̃∗n), nJIN(θ̂IN(Ω̃∗n), Ω̃∗n); k = 1, 2 (33)

For the simulation-based estimators, the over-identification statistics are given by (33) scaled by

S/(S + 1).

3 Illustration of Issues Related to Continuous Time Models

In the following subsections, we use an analytically tractable OU model (continuous time coun-

terpart of a discrete AR(1) process used by Duffee and Stanton (2008)) to highlight the practical

issues associated with the use of indirect methods to estimate continuous time one factor models

of the interest rate.

3.1 Structural Model

Assume that a sample of n observations {yt}t=∆ ...,n∆=T with observation interval ∆, are generated

from an OU process of the form

Fθ : y = (θ0 − θ1y)dt+ θ2dW, dW ∼ iid N(0, dt) , (34)

with θ0 > 0, θ1 > 0, θ2 > 0. A positive θ1 ensures stationarity and mean reversion of the process

towards its long run mean value θ0/θ1. The highly persistent nature of interest rates implies that

θ1 is close to zero, and historical interest rate data imply θ0/θ1 ≈ 0.07 (see for example Chan et al.

(1992) and Broze et al. (1995)) The ability to simulate quasi-samples from the structural model is

a prerequisite for simulation based inference. In the case of the OU process, observations can be

generated from its exact solution (Vasicek, 1977)

yt =
θ0

θ1
(1− e−θ1∆) + e−θ1∆yt−∆ + θ2

√
1− e−2θ1∆

2θ1
εt, εt ∼ iid N(0, 1) , (35)

where ∆ is the observation interval. It is equivalent to a simple AR(1) model, yt = α0 + α1yt−1 +

ut, ut ∼ iid N(0, α2), with the reparameterization α0 = θ0
θ1

(1 − e−θ1∆), α1 = e−θ1∆, and α2 =

θ2

√
1−e−2θ1∆

2θ1
. The interpretation of the parameter values is tied to the value of ∆. Many studies set

∆ = 1 for a monthly (weekly) observation interval, in which case θ1 reflects the monthly (weekly)

mean reversion and θ2 the monthly (weekly) volatility. We choose to standardize ∆, so that ∆ = 1

represents a year, ∆ = 1/12 a month, and ∆ = 1/50 a week. This way the parameters always have
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yearly interpretations, that is, θ1 always represents the yearly mean reversion and θ2 the yearly

volatility. Fuleky (2009) further explores the issue of choosing a unit interval in time series models

in a greater detail.

3.2 Auxiliary Model

For the OU process we consider the following crude Euler discretization as the auxiliary model

F̃µ : yt = µ0∆ + (1− µ1∆)yt−∆ + µ2

√
∆ξt, ξt ∼ iid N(0, 1) . (36)

where ∆ is the observation interval. It is equivalent to a simple AR(1) model, yt = β0 + β1yt−1 +

vt, vt ∼ iid N(0, β2), with the reparameterization β0 = µ0∆, β1 = (1− µ1∆), and β2 = µ2

√
∆.

For the discretized OU process, the sample objective function can be written as

f̃n ({yt}t=∆,...,n∆, µ) =
1

n− 1

n∆∑
t=2∆

[
−1

2
ln(2πµ2

2∆)− 1

2

ξ2
t

µ2
2∆

]
, (37)

where ξt = yt− µ0∆− (1− µ1∆)yt−∆. The derivative of the log-density f̃(yt; yt−∆, µ) with respect

to the auxiliary parameter µ is given by the score vector

g̃(yt; yt−∆, µ) =
∂f̃(yt; yt−∆, µ)

∂µ
=



1

µ2
2

ξt

− 1

µ2
2

ξtyt−∆

1

µ2

(
ξ2
t

µ2
2∆
− 1

)

 , (38)

and the analytical solution to the auxiliary estimator is equivalent to the least squares estimator

µ̃ =



1

∆
[yt − (1− µ̃1∆)yt−∆]

1

∆

[
1− ytyt−∆ − yt yt−∆

y2
t−∆ − (yt−∆)2

]
√
ξ̃2
t

∆


, (39)

where ξ̃t = yt − µ̃0∆− (1− µ̃1∆)yt−∆ and (·) represents the mean value.

While the economic interpretation of the µ parameters in (36) is similar to that of the θ param-

eters in (34) or (35), they are not the same: the auxiliary model is mis-specified and the maximum

likelihood estimates of the auxiliary parameters are biased and inconsistent (Lo, 1988).

12



3.3 Binding Function

For the OU process, µ(θ) is given by the probability limit of (39) under Fθ. The binding function

can be derived analytically, or by just comparing the coefficients of (35) and (36) as is done by

Broze et al. (1998) and Phillips and Yu (2007), and is given by

µ0(θ) =
θ0

θ1∆
(1− e−θ1∆), µ1(θ) =

1

∆
(1− e−θ1∆), µ2(θ) = θ2

√
1− e−2θ1∆

2θ1∆
. (40)

Because each θ vector is mapped to a distinct µ(θ) vector, this binding function is bijective and

hence invertible. Note that in (40) the difference µ(θ)− θ represents the asymptotic discretization

bias of the auxiliary estimator. This bias is a function of the parameter values and the observation

interval, and it increases with the latter. Thus, a higher frequency of observations will result in

lower asymptotic discretization bias of the auxiliary parameter estimates: ∆ → 0 ⇒ µ(θ) → θ.

For θ1 = 0.1, increasing the observation interval from weekly (∆ = 1/50) to monthly (∆ = 1/12),

quadruples the discretization bias of µ1(θ) from −10−4 to −4× 10−4.

When the model is just-identified (r = p), the IN estimator solves µ̃ − µ(θ) = 0. Thus, θ̂ sets

the value of the binding function equal to that of the auxiliary estimator. Asymptotically both

contain the same discretization bias, and therefore an asymptotically unbiased structural estimator

of the OU parameters is given by θ̂IN = µ−1(µ̃), that is, by inverting (40)

θ̂IN
0 (µ̃) = − µ̃0

µ̃1∆
log(1− µ̃1∆), θ̂IN

1 (µ̃) = − 1

∆
log(1− µ̃1∆), θ̂IN

2 (µ̃) = µ̃2

√
− 2 log(1− µ̃1∆)

1− e2 log(1−µ̃1∆)
.

(41)

Note, in the just identified setting, there is no optimization required to obtain the value of the

estimator. Furthermore, EFθ [g̃(y0;x−∆, µ̃)] = 0 and g̃n(yt;xt−∆, µ(θ̂EN2)) = 0 imply that µ̃ =

µ(θ̂ENj) for j=1,2. Therefore, θ̂IN(µ̃) = θ̂EN1(µ̃) = θ̂EN2(µ̃); see also Gouriéroux and Monfort (1996).

The equality of the θ̂ across estimators does not necessarily carry over to the over-identified case:

when the number of auxiliary parameters exceeds the number of the structural ones, the finite

sample results will depend on the weighting matrices Σ̃n and Ω̃n, and the functional forms of

the individual auxiliary statistics. We show in Section XX that if the auxiliary statistics contain

nonlinearities, over-identifying restrictions on the model parameters will cause additional bias in

the estimates.

3.4 Simulation

It is rarely possible to simulate from Fθ for a fixed θ, as in the case of the OU process with its exact

solution in (35). For most continuous time models there is no closed form solution of the structural

model available. In such cases simulations can be generated from a discrete approximation of the

continuous process, such as the fine Euler discretization (weak order 1) or the Milshtein scheme

(strong order 1).
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To illustrate a fine Euler discretization of the OU process (34), first a sequence {yt}t=δ,...,nkδ=T
is obtained by dividing the observation interval ∆ into k subintervals of length δ = ∆/k and

generating

Fθ,δ : yt = yt−δ + θ0δ − θ1δyt−δ + θ2

√
δεt−δ (42)

= θ0δ + (1− θ1δ)yt−δ + θ2

√
δεt−δ, εt−δ ∼ iid N(0, 1) , (43)

where δ represents the duration of the simulation step. Then, by selecting every k-th data point,

a sequence of observations {yt}t=∆,...,n∆=T is obtained. Because the unconditional mean of the

OU process has an analytic form θ0/θ1, the simulations are started from this value. For processes

that don’t have closed form marginal distributions or known expected values, any reasonable (data

driven) starting value can be chosen but a burn in sequence should be used to eliminate the

transitory effects. Broze et al. (1998) show that for any fixed simulation step, indirect estimators

of continuous time processes remain biased even in large samples. However, they show that by

choosing an appropriately small simulation step the simulation bias becomes negligible.

The simulation bias analyzed by Broze et al. (1998) occurs if the model used for calibration

differs from the true model. For example, if the true data is generated by (35), but the simulated

data during calibration is generated by (43), the indirect estimators will contain simulation bias.

If δ = ∆, then the asymptotic mapping for simulations, µ∆(θ), is given by the identity (compare

(43) and (36))

µ∆
0 (θ) = θ0, µ∆

1 (θ) = θ1, µ∆
2 (θ) = θ2 . (44)

In just identified models θ̂∆ solves µ̃ = µ∆(θ), that is θ̂∆ = µ̃. Asymptotically, θ̂∆ converges to a

biased estimate

θ̂∆
0

p→ θ0

θ1∆
(1− e−θ1∆), θ̂∆

1
p→ 1

∆
(1− e−θ1∆), θ̂∆

2
p→ θ2

√
1− e−2θ1∆

2θ1∆
. (45)

Only the bias that is present in both the auxiliary estimate and the mapping µ∆(θ) can be eliminated

in indirect estimation. Here, the mapping µ∆(θ) is asymptotically unbiased, and as a consequence

the discretization bias present in µ̃ will not be eliminated: the simulation bias of the indirect

estimator θ̂∆ equals the discretization bias of the auxiliary estimator µ̃. As k increases in δ = ∆/k,

the discrete process approaches the continuous time process, and the simulation bias is reduced.

Thus, the discretization bias represents an upper bound on the simulation bias. For 0 < k < 1

Broze et al. (1998) derive the following analytical expressions for µδ(θ) in an OU model

µδ0(θ) =
θ0

θ1∆
(1− (1− θ1δ)

∆/δ), µδ1(θ) =
1

∆
(1− (1− θ1δ)

∆/δ), µδ2(θ) = θ2

√
1− (1− θ1δ)

2∆/δ

θ1∆(2− θ1δ)
.

(46)

As δ → 0, the asymptotic bias of µδ(θ) approaches the discretization bias of µ(θ) in (40). Czellar

and Ronchetti (2008) show that the inverse mapping θ̂δ = (µδ)−1(µ̃) implies a choice of δ such
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that the relative simulation bias is below a certain acceptable threshold. For example, noting that

µ̃1
p→ µ1(θ) in (40), the relative simulation bias of θ̂δ1 can be found as a function of δ

θ̂δ1
p→ 1− e−θ1δ

δ
⇒ asbias(θ̂δ1)

θ1
=

1− e−θ1δ

δθ1
− 1 . (47)

Then, for known θ1, δ can be chosen such that the relative simulation bias of the indirect estimator

θ̂δ1 is below a certain acceptable threshold.

3.5 Choice of S and its Impact on the L, A and M-type Estimators

The choice of S controls the asymptotic efficiency of simulation based estimators, and as S → ∞,

the simulation based estimators are asymptotically equivalent to the analytic estimators. Czellar

and Zivot (2008) show that setting S = 20 gives a 95% asymptotic efficiency of the simulation-based

estimators relative to the auxiliary estimators when the auxiliary model nests the structural model.

For S = 1 the information contained in L,A, and M type simulations is identical, and therefore the

L,A, and M type just identified estimators will give the same estimate for S = 1, but not for S > 1.

In the discussion below plimS→∞ µ̃
i
S(θ) represents uniform, as opposed to pointwise, convergence

of the binding function. In addition, the binding function is assumed to be injective (Gouriéroux

et al., 1993). To see the impact of varying S, note the following: 2

(1.) The L-type binding function is based on a long data set of effective size S × n − 1. The

A-type binding function is based on S separate data sets of effective size n− 1, but it uses all the

information at once and therefore the actual effective size of the data set is S × (n − 1). Thus

the difference between the amounts of information used by the two estimators is equivalent to the

information content of (S − 1) observations. For n = 1000 this amounts to about 0.1%. Therefore,

as S → ∞, both the L and A type binding functions have features mimicking the asymptotic

result: they are based on a data set of approximate size S × n, so that plimS→∞ µ̃
i
S(θ) = µ(θ) =

arg maxµEFθ [f̃(y, µ)] for i = L, A. (As S becomes larger, the auxilary estimates based on the

simulated samples will give a good approximation to the asymptotic result.) During the indirect

inference calibration process, the distance between µ̃i
S(θ) and µ̃ is minimized by adjusting θ. In

just identified models the first order condition for the analytical estimator is µ(θ̂IN)− µ̃ = 0, so that

θ̂IN = µ−1(µ̃). Because plimS→∞ µ̃
i
S(θ) = µ(θ), the just identified simulation based estimator will

converge to the analytic one as S → ∞, that is plimS→∞ θ̂
Ii = θ̂IN for i = L, A in finite samples.

Similarly, in just identified models plimS→∞ θ̂
Ei1 = θ̂EN1 and plimS→∞ θ̂

Ei2 = θ̂EN2 for i = L, A in

finite samples. Finally, for S → ∞ all these just identified estimators will be approximately equal

in large samples, because θ̂EN1 = θ̂EN2 = θ̂IN in large samples. However, in Section XX we show

that this result does not hold in over-identified models.

(2.) The M-type binding function is based on simulated samples of the same size as the

observed sample. The auxiliary estimates based on the simulated samples have the same finite

2also discuss the relative importance of discretization and finite sample bias at realistic parameter values, and
mention the findings of Philips and Yu
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sample properties as the estimate based on the observed sample. Thus, the M-type binding func-

tion is approximating the expected value of the auxiliary estimator in finite samples; that is,

plimS→∞ µ̃
M
S (θ) = E[µ̃M(θ)] = Eµ̃ = E[arg maxµ f̃(y, µ)]. Denote µ(θ) = E[µ̃M(θ)]. During the

indirect inference calibration process, the distance between these two auxiliary estimators with the

same finite sample bias is minimized by adjusting θ. For S → ∞, the first order condition in just

identified models can be written as µ(θ̂IM) − µ̃ = 0, so that plimS→∞ θ̂
IM = µ−1(µ̃). Gouriéroux

et al. (2006) call this a “bT -mean unbiased” estimator. bT -mean unbiasedness does not in general

imply mean unbiasedness, but if µ(θ) is linear in θ then θ̂IM will be mean unbiased, and significant

bias reduction does not require a large S.

(3.) Because the binding function in (6) is defined in the asymptotic sense (n → ∞), the M-

type approximation should be treated differently than the L and A-type approximations. That is,

E[arg maxµ f̃(y, µ)] 6= arg maxµEFθ [f̃(y, µ)]. The M-type estimator possesses some finite sample

bias reduction qualities that have been demonstrated in just identified settings (Gouriéroux et al.

(2000), Gouriéroux et al. (2006), Phillips and Yu (2007)), but we show in Section XX that they do

not necessarily hold for over-identified models.

3.6 Use of Constraints

Sometimes one needs to ensure that the fine Euler discretization does not generate inadmissible

values. Gallant and Tauchen (2004) discuss the need to “bullet-proof” the simulator so that the

data generating process does not cause numerical exceptions on the computer, such as square roots

of negative values and dividing by zero. For example the continuous time square root process

(described in the Appendix) remains strictly positive for the proper choice of the parameters, but a

sequence simulated from its fine Euler discretization will dip below zero with non-zero probability.

In such cases, constraints can be imposed on the values generated by the process. Lord et al. (2006)

give a recent survey of methods to avoid negative observations including absorption, reflection,

truncation and some particular variants of these.

As noted in Section 2.1.1, the indirect estimation methods we consider rely on the assumption

that the true data generating process is stationary. In the case of homoskedastic diffusion models

with a finite volatility coefficient θ2, such as the OU process, stationarity is ensured by the value of

mean reversion parameter θ1 > 0. For θ1 < 0 the process becomes mean averting, that is, it diverges

to infinity. During estimation, the optimizer searches across the admissible parameter space, and

if the parameter is permitted to take on values that generate explosive sequences, the optimizer

might run into numerical difficulties. There are several ways, to impose stability constraints on the

model: constrain auxiliary model parameters only, structural model parameter only, or both sets

of parameters.

Tauchen (1998) showed via an AR(1) model that the EMM objective function contains a built

in penalty for explosive parameter values. His result is also applicable if the data is generated by
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Figure 1: Mechanics of finding the just identified indirect estimate for (a) a downward biased
binding function, (b) an upward biased binding function.

the OU process in (35): the expected value of the score depends on the following second moments

EFθ [y
2
t ] =

θ2
2

2θ1
+
θ2

0

θ2
1

. EFθ [ytyt−∆] =
θ2

2

2θ1
e−θ1∆ +

θ2
0

θ2
1

(48)

Note, that the presence of θ1 in the denominator causes the second moment to quickly diverge to

infinity as θ1 → 0. Therefore, for S → ∞ Tauchen (1998) suggested that constraining only the

auxiliary estimate of an AR(1) model is sufficient to avoid explosive structural parameter estimates

for EMM and indicated a similar result for II. To see the impact of constraints on the indirect

estimators, note the following: 3

(1) EL1 is based on g̃Sn(yt(θ);xt−∆(θ), µ̃) and IL is based on µ̃− µ̃Sn(θ). As shown by Tauchen

(1998), constraining µ̃ will ensure nonexplosive solutions for S →∞ because θ̂EL1 → µ̃ and θ̂IL → µ̃

if the auxiliary model nests the structural model. However, for finite S, the distribution of θ̂EL1

and θ̂IL will include explosive values of θ, especially if µ̃ is close to the boundary. To see this

note that for finite S the simulated binding function is a random function. An unbiased auxiliary

estimator implies that the binding function will fluctuate around a 45◦ line crossing the origin. For

3assume that θ > 0 and µ > 0 represents the stable region of the structural and auxiliary parameter space
respectively
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a downward biased auxiliary estimator there is a high probability of the simulated binding function

falling below this 45◦ line (Figure 1a), but there will also be some realizations of the random binding

function above this line (Figure 1b). In the former case, if the auxiliary estimate is not constrained,

evaluating the inverted binding function with an explosive auxiliary estimate, such as µ̃3, will result

in an explosive structural estimate θ̂3. In the latter case, evaluating the inverted binding function

with an auxiliary estimate close to the boundary, such as µ̃2, will result in an explosive structural

estimate θ̂2. If explosive structural parameter values are attained, the machine arithmetic may run

into trouble during the calibration process. Because constraining the auxiliary estimate only may

not be sufficient to prevent these numerical problems, constraining the structural parameter space

might be necessary (whenever it is feasible).

(2) IM is based on µ̃− µ̃Sn(θ). If the auxiliary estimate µ̃ is on the boundary, the IM estimator’s

bias correcting property implies that the unconstrained IM estimate θ̂IM will be in the nonstationary

region with very high probability. To see this note that an upward biased auxiliary estimator4

implies that the mean simulated binding function is not a 45◦ line crossing the origin, but it

is shifted up (Figure 1b). Therefore evaluating the inverted binding function with an auxiliary

estimate close to the boundary, such as µ̃2, will result in an explosive θ̂2 estimate. In this case, the

need to constrain µ̃ will guarantee explosive θ̂IM even for large S because S →∞⇒ θ̂IM → θ < µ̃ if

the auxiliary estimator is upward biased. Thus, constraining the auxiliary parameter is not enough

to avoid simulations with explosive values; θ has to be constrained too.

(3) The E2 estimator can be considered a hybrid estimator consisting of two steps. In the first

step the simulation based binding function µ̃S(θ) is calculated just as in II. In II this simulated

binding function is directly compared to the auxiliary estimate µ̃. In the E2 estimator the mean

score evaluated with µ̃S(θ) is compared to the mean score evaluated with µ̃, where the latter is

equal to zero by construction. Because the score function is evaluated with the observed data,

a fixed input, all the variability of the E2 objective function can be attributed to the simulated

binding function µ̃S(θ), just like in the case for the II type objective function. Therefore the E2

and II type estimates will be close and their objective functions will look similar in finite samples.

EM2 is based on g̃Sn (yt;xt−∆, µ̃(θ)). If the observed data y is such that µ̃ is explosive, µ̃(θ)

will tend be explosive too because µ̃(θ) and µ̃ contain the same bias. Constraining µ̃ does not

help because the objective function does not depend on µ̃. It depends on the explosive sequence

that generated µ̃. Again, the distribution of θ̂EM2 will include explosive values of θ, especially if µ̃

is close to the boundary. This exacerbates the problem of spurious results at false minima of the

objective function, illustrated in Section 4.2.1. As in the case of II, to avoid explosive EN2 parameter

estimates, the structural parameter space has to be constrained. Gouriéroux and Monfort (1996)

showed that in just identified models EN1, EN2 and IN should return identical results, but if the

auxiliary estimator is constrained, the EN2 estimates will differ because the auxiliary constraint

affects the EN1 and IN estimators, but it has no impact on the EN2 estimator.

(4) So far in this section, the binding function was assumed to be unconstrained. Calzolari et al.

4For example, the mean reversion parameter estimate of an OU process is upward biased in finite samples.
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(2004) proposed a method using multipliers to constrain the auxiliary parameter space including

the binding function. They analyzed indirect estimators with inequality constraints on the auxiliary

model, and include the Lagrange multipliers in the definition of the binding function. This approach

ensures that the derivative of the binding function (including the multipliers) with respect to the

structural parameter has full column rank. If the auxiliary parameter space were constrained by

re-parameterization, no multipliers would be available to augment the binding function, and a flat

area could be introduced in the objective function. That is, changing θ would not change µ̃(θ), and

the simulated binding function would not be invertible in a just identified setting. This can be seen

in Figure 1a: if the auxiliary estimate µ̃ lied on the boundary, a parametrically constrained binding

function would not be invertible. In addition, Figure 1b illustrates that constraining the binding

function cannot prevent explosive structural parameters. Thus constraining the binding function

does not benefit the stability of the model or calculations. Instead, constraining both the auxiliary

estimate µ̃, and the structural θ parameter space seem to be sufficient to avoid inadmissible results.

Those favoring constraints on the auxiliary model note that they may be easier to implement

than the constraints on the structural model. However, observations from diffusion models can be

generated by a fine Euler discretization, for which the boundary of the stable parameter space is,

in general, the same as for the auxiliary model. For simple discrete models of the interest rate the

constraints are known: Broze et al. (1995) study the ergodic properties of common discrete time

interest rate models and show conditions for their stationarity. Therefore, the constraints can be

directly imposed on the simulations.

3.7 Issues Related to Over-Identified Indirect Estimators of Continuous Time

Processes

Over-identification takes place if the number of auxiliary parameters exceeds the number of struc-

tural ones. In this case the estimator is not independent of the weighting matrix. Over-identification

enables the researcher to test wether the model is correctly specified by evaluating the objective

function with the structural parameter estimates (Gallant and Tauchen, 1996). The imbalance

between the number of auxiliary and structural parameters occurs either because a large number of

auxiliary parameters is used to approximate the structural model, or because some of the structural

parameters are assumed to be known. For example, on the one hand Gallant and Tauchen (1996)

approximate the structural model with a highly parameterized auxiliary score generator; on the

other hand, Duffee and Stanton (2008) achieve over-identification by estimating only a subset of

the structural parameters. In the latter case some structural parameters are assumed to be fixed

at their true values, and at the same time all auxiliary parameters are estimated.

Over-identification arising from model based restrictions has been successfully used by Chan

et al. (1992) and Broze et al. (1995) to compare specific interest rate models nested within a general

model. For example Chan et al. (1992) used GMM to estimate a wide variety of short term interest

rate models. Their approach exploits the fact that many term structure models can be nested
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within the following stochastic differential equation

dy = (θ0 − θ1y)dt+ θ2y
θ3dW , dW ∼ iid N(0, dt) . (49)

The various models are obtained by placing appropriate restrictions on the four θ parameters. For

example for the OU model θ3 = 0, and for the CIR model θ3 = 0.5. Chan et al. (1992) use four

moment conditions to estimate the discrete time approximation to (49)

yt = θ0 + (1− θ1)yt−1 + θ2y
θ3
t−1εt , εt ∼ iid N(0, 1) (50)

by GMM. In addition to (50) they also estimate the discrete time versions of the nested models.

The GMM estimator is just identified for model (50), because the number of moment conditions and

the number of parameters are equal, but it becomes over-identified if any restrictions are imposed

on the parameter space, such as in the case of the discrete time OU and CIR models.

The logic is similar in the case of indirect estimators: if (50) represents both the structural

and the auxiliary models, the indirect estimator is just identified, but if (50) only represents the

auxiliary model, and the structural model is a discrete time OU or CIR model, the indirect estimator

becomes over-identified. In the latter case there are restrictions placed on the structural parameter

space. While the value of the just-identified objective function is equal to zero at the parameter

estimates, the value of the over-identified one is an asymptotically χ2 distributed random variable.

If one or more of the structural parameters are being held fixed at their true values and the model

is correctly specified, asymptotic theory indicates that the estimates of the remaining parameters

will also converge to their true values. However, we show in Section XX that in finite samples

over-identification introduces a bias caused by the nonlinearity of the auxiliary statistics.

4 EMM and II Estimation of an OU Process

Because it has an exact analytical solution, the OU process represents the closest connection be-

tween a discrete time AR(1) model and a diffusion, and we use it to address some of DS’s criticism.

In this section, we apply the EMM and II estimators to an OU model and evaluate their finite

sample performance in a Monte Carlo study.

4.1 Model Setup

The analytically tractable OU process gives us the opportunity to directly compare the performance

of indirect estimators to the benchmark MLE. The true data generating process is an OU process of

the form given in (34). Weekly observations (∆ = 1/50) of annualized interest rates are generated

from its exact solution in (35) for two sets of true parameters. The first one, θ = (0.01, 0.1, 0.1),

also used by Phillips and Yu (2007), is based on the following empirical findings (see for example

Chan et al. (1992)): (1) the mean annualized interest rate θ0/θ1 on short term government bonds

has not exceeded 10% in the last 20 years, (2) interest rates are highly persistent and the annual
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mean reversion rate θ1 is around 10%, (3) while the volatility θ2 of interest rates is proportional to

their level, the annualized volatility is below 10%. The value θ1 = 0.1 implies that the half life of

a shock is approximately seven years.

The second set of parameters is derived from the AR(1) parameterization of DS θDS = (0, 0.9868, 1)

to achieve comparability with their results. DS assumed weekly observations, and used ∆ = 1 to

represent the observation interval. Therefore their parameter values have weekly as opposed to

annual interpretation in the following AR(1) process

yt = θDS0 + θDS1 yt−∆ + θDS2 εt, εt ∼ iid N(0, 1) , (51)

The AR(1) parameters can be mapped to the OU parameters by inverting the following correspon-

dence between (35) and (51)

θDS0 =
θ0

θ1
(1− e−θ1∆), θDS1 = e−θ1∆, θDS2 = θ2

√
1− e−2θ1∆

2θ1
. (52)

Thus, we obtain the second set of parameters from the transformation: θ1 = −∆−1 log θDS1 =

−50 log 0.9868 = 0.66, θ0 = θDS0 θ1/(1−θDS1 ) = 0·0.66/(1−0.9868) = 0, θ2 = θDS2

√
2θ1/(1− (θDS1 )2) =

1
√

2 · 0.66/(1− 0.98682) = 7.071. Here, θ1 can be interpreted as the annualized mean reversion

toward the long run mean of zero, and θ2 as the annualized volatility of the OU process. The value

θ1 = 0.66 implies that the half life of a shock is approximately one year. We consider a time horizon

of 20 years, which corresponds to 1000 observations.

The auxiliary model is a crude Euler discretization of the OU process (36), and the auxiliary

score and estimator are given in Section 3.2. We use their analytical forms (38) and (39) for calcu-

lating the binding function in the calibration process. Following the recommendation of Tauchen

(1998), we constrain the maximum likelihood estimate of the auxiliary parameter µ̃ from the “ob-

served data”. That is, we impose µ̃1 > 0 and µ̃2 > 0 in the optimizer in the maximum likelihood

estimator. The structural model can be constrained or unconstrained, and we analyze the impact

of constraints by comparing the two results.

We consider two just-identified models: model (3×3), where all three parameters are estimated

in both the structural and auxiliary models; and model (1 × 1), where only the mean-reversion

parameter is estimated in both the structural and auxiliary models; the constant and the volatility

parameter are held fixed at their true values. In addition we consider an over-identified model

(1×3), where only the mean reversion parameter is estimated in the structural model, but all three

parameters are estimated in the auxiliary model.

4.2 Objective Functions and Confidence Intervals

In this section we illustrate the objective functions and confidence intervals of the indirect estima-

tors. The results and diagrams are based on a representative sample with θ = (0.01, 0.1, 0.1), T = 20

and simulations from the exact solution of the OU process (35) with S = 20,∆ = 1/50, and
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OU parameter estimates

QMLE EN1 EL1 EA1

θ0 0.0159 0.0159 0.0153 0.0135
θ1 0.2645 0.2652 0.2344 0.2105
θ2 0.1033 0.1035 0.1035 0.1034

EN2 EL2 EA2 EM2

θ0 0.0159 0.0153 0.0136 -0.0102
θ1 0.2649 0.2341 0.2103 -0.0685
θ2 0.1035 0.1035 0.1034 0.1035

IN IL IA IM

θ0 0.0159 0.0153 0.0135 -0.0102
θ1 0.2652 0.2344 0.2106 -0.0684
θ2 0.1035 0.1035 0.1034 0.1035

Table 1: Unconstrained parameter estimates of true θ = (0.01, 0.1, 0.1), T = 20 in linear just-
identified model of OU process. Simulations are from exact solution with S = 20, and ∆ = 1/50.

n = 1000.

4.2.1 Shapes of the Objective Functions for 3× 3 Just-Identified Models

Figure 3 illustrate the shapes of objective functions of all considered estimators for just identified

models in an unconstrained parameter space. For all diagrams, θ2 is held fixed at its estimate.

The corresponding parameter estimates are displayed in Table 1, and denoted with a green dot

in the diagrams (QMLE represents the naive auxiliary estimates). Looking at Table 1, I observe

what Phillips and Yu (2005b) and Phillips and Yu (2005a) also indicate: θ2 can be estimated quite

precisely, but the estimates of θ1 suffer from strong finite sample bias in highly persistent processes.

Also, the M-type estimates of θ1 have smaller finite sample bias than the other estimates.

For the AR(1) model, DS and Tauchen (1998) pointed out that some of the moments in the

EN1 estimator are scaled by the population variance, whereas the corresponding moments in the

IN and EN2 estimators are scaled by the sample variance. The population variance grows rapidly

as the process becomes more persistent, and it causes the objective function for the EN1 estimator

to peak sharply for θ near the stability boundary. Because the sample variance is being held fixed

during calibration, the EN2 and IN objective functions remain roughly symmetric around their

minimum. While the point estimates are approximately equal across the E1, E2 and II estimators,

the different objective function shapes imply that the performance of the E1 estimator in tests and

the associated confidence intervals will be different from those of the E2 and II estimators.

In general, the A and L-type criterion functions most closely match the corresponding N-type

criterion functions which suggests that the A and L-type estimators have similar finite sample

properties as the N-type estimators. However, the M-type criterion functions are shifted toward

the non-stationary region which suggests that the M-type estimators have different finite sample

properties than the other estimators. If the structural parameter space is unconstrained, the

optimizer may evaluate the E2 and II type objective function with the parameter in the unstable

region. While the unconditional mean of explosive processes is not defined, the starting value of

22



simulation is still set to its implied value θ0/θ1 which is infinity for θ1 = 0. As the diagrams show,

the II type objective function remains roughly symmetric around its minimum, but the E2 type

will have false minima in the non-stable region.

The false minima of E2 are caused by the computer running out of significant digits, and as

a result giving imprecise estimates of the simulated binding function. For an explosive value of

the slope parameter, the generated observations quickly diverge towards infinity. The least squares

estimator of the mean reversion parameter µ1(θ) in (39), is a ratio where both the numerator and

the denominator are of similar magnitude. Therefore this estimate, while biased, is relatively close

to θ1, or 1. However, the estimator of the intercept µ0(θ) is the difference between two terms of

the same magnitude, and the result can be very large in absolute terms. This makes the estimate

of the intercept extremely imprecise, and the error is propagated to the OLS estimate of µ2(θ).

The wild fluctuation of the E2 objective function is caused by the occasional large value of µ2(θ)

in the denominator of the score (38): if the µ2(θ) estimate is large, all terms in the score will be

close to zero. While the II objective function is also affected by the estimation error of the binding

function, it doesn’t give false minima because none of the terms of the binding function appear in

the denominator. In fact, all estimators are subject to a large error in explosive series, but only E2

will fluctuate violently as a result of µ2(θ) in the denominator. However, as indicated in Section

3.6, the structural parameter space has to be constrained in order to avoid explosive E1, E2 and II

estimates in finite samples, and this constraint also eliminates the potential for the erratic behavior

of the E2 estimator.

4.2.2 Confidence Intervals for the Mean-Reversion Parameter for 3×3 Just-Identified

Models

Figure 4 illustrates the LR-type statistics (31), (32) and their simulation based counterparts for

testing H0 : θ1 = θ0
1 as functions of θ0

1 for the just identified estimators. The point estimates for

θ1 and 95% confidence intervals obtained by inverting the LR statistics are displayed in the title

of each diagram. The 95% confidence intervals contain values of θ0
1 such that the value of the LR

statistic lies below the 95% quantile of the chi-square distribution with 1 degree of freedom.

While the estimates are very similar across estimators using the same amount of information,

the LR statistics for the score based (E1) and binding function based (E2, II) estimators can have

very different shapes. For the highly persistent cases, LRE1 is highly asymmetric due to the scaling

of some moments by the population variance. It is extremely flat for θ0
1 values above θ̂E1

1 , and

peaks sharply as θ0
1 approaches zero. In contrast, the LR functions for the E2 and II estimators

are almost identical and are roughly symmetric in θ0
1, because they are scaled by the variance of

the observed sample, which is constant for any θ0
1.

The E1 confidence interval covers a wide range of θ above the point estimate, but only little of

the range below the point estimate. While the shape of the criterion function puts a high penalty

for θ close to the boundary of stationarity, it causes point estimates above the true value to be

rejected with high probability. Because the E1 estimator delivers very limited finite sample bias
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correction, most of the point estimates will fall above the true value, thus causing a high rejection

rate. Also, the optimizer of the E1 estimator often converges slower than the optimizer of the II

Average estimation time

EN1 EL1 EA1 EN2 EL2 EA2 EM2 IN IL IA IM

Simulations from exact solution

True θ = (0.01, 0.1, 0.1), T = 20, ∆ = 1/50. Unconstrained estimation.

0.03 5.15 5.92 0.09 4.16 5.79 11.40 0.01 4.03 5.65 11.06

Table 2: Average estimation time in seconds.

estimator if the starting value falls far above the true value and the search is conducted along the

flat side of the E1 objective function. This is apparent from Table 2, which shows estimation times

with the Nelder-Mead optimizer. From the analytic estimators, IN is the fastest, followed by EN1,

and EN2. The last two positions flip in the ranking of the L and A type estimators, and here the E1

estimator is the slowest. In addition, gradient and Hessian based optimizers might converge slowly

for E1 because the shape of the E1 objective function is non-quadratic. The M-type estimators are

the slowest overall, but only less then three times as slow as the L-type estimators.

4.2.3 Objective Functions and Confidence Intervals for 1× 3 Over-Identified Models

In order to illustrate the impact of over-identification on the objective functions and confidence

intervals of the indirect estimators, the θ0 and θ2 parameters are restricted to their true values,

and only θ1 is being estimated in the structural model.

Figure 5 illustrates the LR-type statistics (31), (32) and their simulation based counterparts

for testing H0 : θ1 = θ0
1 as functions of θ0

1 for the over-identified estimators. The corresponding

parameter estimates are displayed in Table 3, and denoted with a green dot in the diagrams (QMLE

represents the naive auxiliary estimates). Here the point estimates differ across estimators using

the same amount of information, and similar to the results reported in DS, LRE1 has its minimum

the farthest away from the true value θ1 = 0.1. Based on the diagrams, the EN1 estimator has the

most negatives going against it: the largest bias, widest asymmetric confidence interval which does

not contain the true parameter value. On the other hand, EM2 has the smallest bias, narrowest

confidence interval which contains the true parameter value.

OU parameter estimates of θ1

QMLE EN1 EL1 EA1
0.2645 0.2490 0.2241 0.1912

EN2 EL2 EA2 EM2
0.2325 0.2087 0.1892 0.0905

IN IL IA IM
0.2336 0.2095 0.1900 0.0904

Table 3: Constrained θ1 parameter estimates for true θ = (0.01, 0.1, 0.1), T = 20 in linear over-
identified model of OU process. Simulations are from exact solution with S = 20, and ∆ = 1/50.
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The EN objective function of the OU process depends on the population moments (48) and

therefore its shape is asymmetric: it quickly increases as θ1 → 0 but is relatively flat for θ1 >> 0.

Figure 6 shows the shape of the just identified EN objective function in two cases: (1.) when θ2

is being held fixed at θ̂EN2 (the just identified estimate), and (2.) when θ2 is being held fixed at

θ2 = 0.1, the true value. It is clear that the large deviation of the over-identified EN estimate from

the just identified one is caused by holding θ2 fixed at a value that is not optimal for the current

set of observations.

Figure 7 shows the third term of the expected value of the score vector (derivative of likelihood

with respect to µ2). The green dot at level Eθ[g̃(yt(θ); yt−∆(θ), µ̃)] = 0 represents the just identified

estimate providing the best fit given the observed data. In the over-identified model θ0 and θ2 are

being held fixed and θ1 has to compensate for those restrictions when minimizing the objective

function. The second and third terms of Eθ[g̃(yt(θ); yt−∆(θ), µ̃)] depend on the population moments

(48) which explode to infinity as θ1 → 0. Because of the large penalty of moving towards 0, θ1 will

tend to adjust by moving away from 0 as illustrated by the gray dot in Figure 7. This tendency of

θ1 to adjust by moving away from 0 will cause the over-identified EN1 estimator to have a larger,

upward bias than the just identified estimator.

4.3 Monte Carlo Results

In this section, we conduct a Monte Carlo study of the bias of the indirect estimators. Un-

less otherwise stated, the results and diagrams are based on representative samples with θ =

(0.01, 0.1, 0.1), T = 20 and simulations from the exact solution of the OU process (35) with

S = 20,∆ = 1/50, and n = 1000.

4.3.1 Bias and RMSE in 3× 3 Just-Identified Models

Figures 8 illustrate the distribution of estimates based on 1000 Monte Carlo simulations for 3×3 just-

identified models in an unconstrained parameter space. The results are shown for the constrained

auxiliary QMLE, EXAct (constrained) structural MLE, unconstrained auxiliary OLS, and the

indirect estimators. The indirect estimates of θ0 and θ1 are distributed approximately equally

to the auxiliary estimates, except for the M-type estimators, which show significant bias correction,

and have lower RMSE compared to the other ones. The estimates of θ2 are essentially unbiased for

all indirect estimators.

The upper portion of Table 4 displays the mean, mean bias and root mean squared error (RMSE)

for the estimators. As Gouriéroux and Monfort (1996) indicate, the E1, E2, and II estimators of

the same type (that is N, L, A, and M type if available) give nearly identical results in this just

identified setting. Because we use the exact solution for data generation, there is no simulation bias

in the estimates. The discretization bias of the QMLE is apparent from its downward deviation

from the EXAct solution (-0.5%), but the finite sample bias (+270%) clearly dominates at this

parameterization. The analytic (N-type) estimators perfectly correct the discretization bias, but

they have no effect on the finite sample bias. The L and A type estimators slightly correct the
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finite sample bias, but remain very close to the analytic estimators. The M-type estimator delivers

the largest finite sample bias reduction and the smallest RMSE. However, it does not completely

eliminate the bias. Gouriéroux et al. (2006) find that setting S = 250 in their dynamic panel

models, does essentially eliminate the bias, but the diagrams of Gouriéroux et al. (2000) still show

some bias at S = 15000 (see the impact of S on the distribution of the L and M-type estimators

in Figure 15). It is important to remember the M-type estimator is “bT mean unbiased”, but not

necessarily mean unbiased.

The non-mean unbiasedness is caused by the non-linearity of the binding function for θ <

0. Figures 16 and 17 illustrate this point. The N-type binding function is essentially unbiased

around the true parameter values because the asymptotic discretization bias is negligible. Thus

the distributions of the N, L and A-type estimators are similar to the distribution of the auxiliary

estimator, as indicated in the top right panel of Figure 17. The bottom left panel of Figure 17

shows that if the M-type binding function contained a uniform bias, θ̂IM1 and θ̂EM2
1 would be mean

unbiased. However, Figure 16 indicates that the super-consistency of M-type binding function for

θ ≤ 0 causes the M-type binding function to be non-linear in this range of θ, and therefore the

M-type estimators remain biased, as shown in the bottom right panel of Figure 17.

In the case of unconstrained estimation, the EL1 and EA1 estimators deviate (interestingly,

upward) from their same simulation length E2 and II counterparts, but constraining the struc-

tural parameter space essentially eliminates the difference, indicating that the deviation of the E1

estimator is caused by the parameter entering the non-stationary region. For the alternative pa-

rameterization θ = (0, 0.66, 7.071) in the lower portion of Table 4 the ranking of the estimators

based on bias and RMSE remains the same as above.

4.3.2 Bias and RMSE in 1× 1 Just-Identified Models

Gouriéroux et al. (2000) point out, that the median unbiased estimator of Andrews (1993) is an

application of the IM estimator to a just-identified model with one parameter, when the mean is

replaced by the median in the simulated binding function (MEM2 and MIM). In this section I

investigate the relationship between the M-type estimator and these median unbiased estimators.

Figure 18 illustrates the distribution of estimates based on 1000 Monte Carlo simulations for 1× 1

just-identified models in an unconstrained parameter space. The results are shown for the con-

strained auxiliary QMLE, EXAct (constrained) structural MLE, unconstrained auxiliary OLS, and

the indirect estimators, including two median unbiased estimators (MEM2 and MIM).

Because the distribution of the mean reversion parameter µ1 in the auxiliary model has a

positive skew, the M-type simulated binding function is upward biased compared to a typical

(median) auxiliary estimate. Therefore the distance minimization between the auxiliary estimate µ̃

and the simulated binding function µ̃MS (θ) results in a larger shift of the distribution of the structural

estimates θ̂ than would be necessary to get a median unbiased estimator. The diagram shows that

the MEM2 and MIM estimators are essentially median unbiased, while the M-type estimators are

not quite mean unbiased, implying that the median based estimators are more robust against the
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non-linearities of the binding function than the M-type estimator. The impact of the nonlinearity

of the binding function for highly persistent processes becomes even more apparent by comparing

the diagrams in Figure 18. The lower one displays the results for θ = (0, 0.66, 7.071), and the mean

bias of the M-type estimators at this parameterization almost disappears.

4.3.3 Bias and RMSE in 1× 3 Over-Identified Models

Figure 9 illustrates the distribution of estimates based on 1000 Monte Carlo simulations for 1× 3

over-identified models in a constrained structural parameter space. The diagrams are based on

representative samples with θ = (0, 0.66, 7.071), T = 20 and simulations from the exact solution of

the OU process (35) with S = 20,∆ = 1/50. Throughout, θ0 and θ2 are being held fixed at their

true values. In addition to the diagram, the results are also given in Table 8 for the constrained

auxiliary QMLE, EXAct (constrained) structural MLE, unconstrained structural OLS, and the

indirect estimators.

As apparent from the diagram, the distribution of the over-identified E1 type estimators clearly

differs from the just-identified ones. As indicated in Section 4.2.3, this behavior can be attributed

to the sensitivity of the E1 objective function to θ2 when it is being held fixed at a value that is

suboptimal for the current set of observations.

The over-identification restriction, θ0 = 0, implies that µ0(θ) = 0 in (40). Correspondingly,

µ1(θ) and therefore θ̂1
IN

will converge towards the OLS estimate of θ1 when the structural model

does not contain a constant term as opposed to the QMLE. This is apparent in the results in Table

8 and can be verified by substituting µ0(θ) = 0 in the II moment function

H̃n(µ̃− µ(θ)) =
∆

µ̃2
2


−[yt − (1− µ1(θ))yt−∆ − µ0(θ)][

(ytyt−∆ − µ0(θ)yt−∆)/y2
t−∆ − (1− µ1(θ))

]
y2
t−∆

− 2
∆(µ̃2 − µ2(θ))

 . (53)

It follows from (40) that the asymptotic discretization bias of θOLS1 is about 0.005 at this

parameterization. Because the constraint on the EXAct structural MLE is never binding at this

parameterization, the difference between θEXA1 and θOLS1 gives the discretization bias measured in

the Monte Carlo study. While the IN estimator slightly over-corrects the discretization bias, the

EN2 estimator does not fully correct it. However, the discretization bias is negligible compared to

the finite sample bias, which leaves all N, L and A-type estimators biased. In general, the N, L

and A-type II and E2 estimators outperform the E1 estimators, but more importantly, the M-type

estimators seem to overcorrect the finite sample bias.

4.3.4 Impact of Over-Identification on the Bias of the M-type Estimators

As observed in the previous section, the over-identified M-type estimator over corrects the bias for

the indicated parameterization. This is surprising given the finite sample bias correcting property

of the M-type estimator in just identified models: if the binding function is linear, the M-type
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estimator is mean unbiased, otherwise it is bT -mean unbiased (Gouriéroux et al., 2000). As described

in Chapter 3, in the just-identified setting the M-type estimator can be viewed as an inverted binding

function, and the weighting matrix does not play a role. However, in over-identified models the

weighting matrix is essential in forming linear combinations of the indirect moment functions, and

it is these linear combinations that are solved by the estimator.

In this section, we explore the effect of the weighting matrix and the nonlinearity of the moments

on the M-type estimates if over-identification restrictions are imposed on the structural parameters.

Column F-II in Table 2 of Duffee and Stanton (2008) shows that the IM estimates tend to exceed

the true AR(1) parameter value in all cases they considered. I confirmed a similar result for the

OU process: note that in the lower part of Table 8 the IM type estimator seems to overcorrect for

the θ = (0, 0.66, 7.071) parameterization. That is, the IM bias in the over-identified model is in

the opposite direction (down) compared to the finite sample bias (up). I contend that the finite

sample bias correcting property of the IM estimator does not carry over from just identified models

to over-identified ones.

To see if the observed bias is caused by insufficient simulation size, I first looked at the impact

of S on the bias of the IL and IM estimator of θ1 in both the just-identified and the over-identified

setting. Figure 10 shows the distribution of the auxiliary, the IL, and the IM estimators in a just-

identified setting, and Figure 11 shows those same estimators in an over-identified setting. First

look at the just identified case. For S = 1, the IL and IM estimators are identical, but for S

increasing the IL estimator’s distribution approaches the distribution of the auxiliary estimator,

and the IM estimator’s distribution shifts so that it’s mean approaches the true parameter value.

Given the analysis in Chapter 3, and the fact that the discretization bias is negligible in comparison

with the finite sample bias, this is the expected outcome:

(1) For S → ∞ the IL estimator corrects the negligible discretization bias, but not the finite

sample bias of the auxiliary estimator, and therefore the distributions of the IL and auxiliary

estimators are very similar for large S.

(2) For S →∞ the IM estimator corrects both biases of the auxiliary estimator, and therefore

the mean of the IM estimator is shifted by approximately the amount of the total bias of the

auxiliary estimator (exactly if the binding function is linear (Gouriéroux et al., 2000)).

The diagrams for the over-identified case in Figure 11 do not follow this logic: for increasing

S, the means of the IL and the IM estimators seem to converge to values below the corresponding

values in the just identified setting; that is, both seem to be downward biased compared to their

just-identified counterparts. In the following, I will focus on the IM estimator, but later I show

that the arguments are valid for the IL estimator too, albeit the impact on the IL estimator is

somewhat milder.

The bias of the IM estimator in the over-identified model is caused by two sources: (1.) the

interaction between the terms in the weighting matrix and the simulated binding function, and (2.)

the relationship between the structural parameter θ1 in θ = (θ0, θ1, θ2) and the auxiliary estimates

µ̃(θ) in the simulated binding function during calibration. During calibration, µ̃M
S0(θ) and µ̃M

S1(θ)
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are jointly estimated by OLS, and their bias influences the bias of the structural estimates in over-

identified models. In the Appendix, we show that the approximate biases of the auxiliary estimators

are

E[µ̃1(θ)]− θ1 ≈
3e−θ1∆ + 1

T
+

1

∆
(1− e−θ1∆)− θ1 , (54)

and

E[µ̃0(θ)]− θ0 ≈ θ0

(
3e−θ1∆ + 1

θ1T
+

1− e−θ1∆

θ1∆

)
− θ0 . (55)

For small positive values of θ1 the constant term in the simulated auxiliary estimate, µ̃0(θ), will be

biased away from zero; that is, the estimates of positive constants will be biased up and those of

negative constants will be biased down in finite samples.

While the true value of the constant in the DS parameterization is fixed at θ0 = 0, the auxiliary

estimate µ̃0 can be positive or negative. In the just identified model both θ0 and θ1 can be optimally

chosen to set the distance between the vector of auxiliary estimates µ̃ and the binding function µ̃(θ)

equal to zero. In the over-identified model, only θ1 will adjust to minimize the objective function,

and it will contribute to the reduction of d0 = µ̃0 − µ̃0(θ) by deviating from the just identified θ1

estimate. The amount of deviation will be determined by the weighting matrix and the sensitivity

of µ̃(θ) to θ1.

The dependence of µ̃0(θ) on θ0 and θ1 for true θ = (0.01, 0.1, 0.1), and n = 1000 data points

generated with ∆ = 1/50 from a particular seed is shown in Figure 12. The explosive behavior of

µ̃0(θ) as θ1 → 0 can also be deduced from (60). As the contour-plot in Figure 12 shows, there is a

strengthening relationship between µ̃0(θ) and θ1 when the latter is approaching zero. Depending on

the random draw, the distance d0 might be reduced by moving from the just identified θ1 estimate

towards zero or away from zero. The larger sensitivity of µ̃0(θ) to θ1 in the neighborhood of zero

implies a larger benefit of a deviation of θ1 towards zero than a deviation of θ1 away from zero.

Therefore on balance the deviations towards zero will dominate, which explains the downward bias

of the over-identified IM estimator.

The nonlinear behavior of the binding function for θ1 → 0 will cause the objective function to

become steeper and correspondingly the confidence intervals to be shorter. Because asymptotically

the finite sample bias term in (61) goes to zero, and the discretization bias is declining for θ1 → 0,

the IL binding function and estimator will be less affected by these nonlinearities (see Figures 13

and 19).

A comparison of Tables 8 and 4 reveals that the over-identified E2 and II type estimates of

θ1 have lower bias and RMSE for the θ = (0.01, 0.1, 0.1) parameterization than the just-identified

ones. This can be explained by the bias of over-identified estimators toward zero described for the

M-type estimator in the previous section. Because the mean reversion parameter is closer to the

boundary of stationarity, the nonlinearities present in the binding function are stronger, and the

bT -mean unbiased IM estimator is farther from being mean unbiased than in the θ = (0, 0.66, 7.071)

case. Then the “over-correction” present in the over-identified estimator pushes the estimates closer

to the true value.
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4.3.5 Test Statistics

Table 6 shows the joint LR-type tests, and Table 7 shows the LR-type test of the mean reversion

parameter θ1 for the just-identified models. The parameterization and simulation type is displayed

in the table headings.

In the joint LR tests, the E1-type estimators have the highest rejection frequencies, followed by

the M-type estimators. Interestingly, the IM estimators have the lowest rejection frequencies in the

LR tests for θ1. This can be explained by looking at Figure 19. The level curves of the objective

function have a shape elongated in the 45◦ direction. An increase in θ1 implies a decrease in the

“slope” of the process, and assuming that the unconditional mean lies in the positive quadrant, to

minimize squared residuals, the “intercept” or θ0 has to increase. The M-type objective function is

steeper that the L-type one as θ moves off the estimate. This is primarily caused by the nonlinearity

of the binding function. Because the objective function is re-optimized while θ1 is held fixed in

the simple test, its value will be considerably smaller than when all θ parameters are being held

fixed at their true values. Because the L-type estimates have a larger bias, the M-type estimator

actually performs better than the L-type one in the simple test. A comparison of the upper and

the lower portions of the Tables 6 and 7 shows that the rejection rate of LR-type tests increases as

the process becomes more persistent.

Mean unbiasedness implies that the estimates from the positively skewed IM estimator will fall

below the true parameter value with high probability (most of the density lies below the truth).

In addition, the confidence interval decreases as θ1 approaches zero. The combination of these

two effects implies that the empirical rejection frequency of the LR-type test will be larger for the

M-type estimator than for a median unbiased estimator.

Table 10 shows the over-identification statistic, or J-test, for the over-identified models, and

Table 11 shows the joint LR-type tests. The parameterization and simulation type is displayed in

the table headings.

In all cases, the E1-type estimators have the highest rejection frequencies. The rejection rate

of LR-type and over-identification tests increases as the process becomes more persistent. The size

of the LR-type tests is closest to the nominal size for the N, L, and A-type E2 and II estimators.

The lower LR-type test rejection frequencies in Table 11 compared to Table 7 can be explained by

the lower upward bias of the over-identified estimators discussed in the previous section.

5 Conclusion

5 In this paper, we study indirect estimation methods with a special emphasis on issues related to

continuous time models of the interest rate.

The EMM-2 (E2) estimator is based on the auxiliary score evaluated with the binding function

and the observed data. It is asymptotically equivalent to the EMM (E1) estimator, but in finite

samples it behaves differently. Along with the E2 estimator we subject the E1 and II estimators

5should we include any CIR or bond pricing results?
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to Monte Carlo experiments to analyze their finite sample properties, and I discuss the issues

pertinent to indirect estimation of continuous time models. Among other things, we demonstrate

the dominance of the finite sample bias over the discretization bias in highly persistent time series,

and this result led us to focus on the finite sample behavior of different estimator types (N, L, A,

M). In our Monte Carlo study, we find that for the naturally occurring just identified estimators

of continuous time models, the performance in point estimation mainly depends on these types

as opposed to whether the estimator is score based or binding function based. The N, L, A type

estimators deliver none, or very limited amount of, finite sample bias correction, and because

the finite sample bias dominates at realistic parameter values, the M-type estimator could be the

preferred estimator if its slightly slower speed is not an issue.

We noticed that the nonlinearity of the auxiliary statistics (auxiliary score and estimator)

combined with model based restrictions may lead to additional bias in comparison to the bias of

just identified estimators. In particular, we showed that the excessive bias of EMM criticized by

Duffee and Stanton (2008) is caused by over-identification restrictions with parameter values that

are sub-optimal for a given set of observations. To satisfy the first order conditions, the estimated

parameters have to pick up the slack caused by these over-identifying restrictions, and as a result

they will be biased. In fact, the situation is similar for all simulation based estimators, and we

illustrated the distortion of the IM estimator caused by the interaction between the nonlinear terms

of the binding function.

When the auxiliary model is a crude Euler discretization of the underlying diffusion, the same

number of parameters will be present in both. If the same restrictions are placed on both the

structural and auxiliary models, the estimator remains just identified, and the additional bias

caused by over-identification can be avoided. Thus, in light of our findings, we recommend to

keep the indirect estimators of interest rate diffusions just identified by either estimating all model

parameters, or imposing the same restrictions on both the structural and auxiliary models.

We also find that the performance of E2 is comparable to II in most aspects. This result counters

the criticism of the EMM estimator by Duffee and Stanton (2008) who compared E1 and II in an

over-identifed setting: not only does EMM give the same point estimates in a just identified setting

as II, but if it is based on the binding function, it also performs similarly to II in tests. 6

The direct comparison of E1, E2 and II reveals that EMM based on the binding function, E2,

is approximately equivalent to II. The added benefit of the binding function based E2 estimator

is the availability of finite sample bias correction of the M-type estimator, which is unavailable for

the E1 estimator. Given the dominance of the finite sample bias in discrete time approximations

of continuous time interest rate models, the finite sample bias correction property of the M-type

estimators is highly desirable, and my analysis shows that EM2 (and IM) deliver the most accurate

6Further, we find that the beneficial finite sample properties of the M-type estimators carry over to bond prices
for some models, like the CIR model, but this result can not be generalized to all interest rate models. The reason
is that the bond price is a nonlinear function of the underlying parameters, and a nonlinear transformation of a
mean unbiased estimator does not imply mean unbiasedness of the transformed value. However, as long as the
transformation is only mildly nonlinear, the illustrated plug-in method based on M-type estimates of the underlying
parameter values becomes a feasible bias corrected bond price estimator.
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point estimates. If the stability constraints on the structural simulator are known, as in the case

of some single factor models of the interest rate, E1 should be avoided, and instead EM2 (or IM)

can be used to achieve accurate finite sample results. Again, EMM is not necessarily inferior to II,

and in fact it has the same benefits as II if it is based on the binding function, as I illustrated in

this study.

32



References

Andersen, T. and Lund, J. (1997). Estimating continuous-time stochastic volatility models of the

short-term interest rate. Journal of Econometrics, 77(2):343–377.

Andrews, D. (1993). Exactly Median-Unbiased Estimation of First Order Autoregressive/Unit Root

Models. Econometrica, 61(1):139–165.

Ball, C. and Torous, W. (1996). Unit roots and the estimation of interest rate dynamics. Journal

of Empirical Finance, 3(2):215–238.

Broze, L., Scaillet, O., and Zakoaan, J. (1998). Quasi-Indirect Inference for Diffusion Processes.

Econometric Theory, 14(2):161–86.
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6 Appendix: Bias of the Auxiliary Estimator of an OU Model

During calibration, µ̃M
S0(θ) and µ̃M

S1(θ) are jointly estimated by OLS. Let µ̃i(θ) represent µ̃M
1i(θ),

and E[µ̃i(θ)] represent µ̃M
∞i(θ). To find the bias of µ̃1(θ), I start out with (35) rewritten in the

AR(1) form used by DS in (51). Marriott and Pope (1954) showed that up to order O(n−2) the

finite sample bias of the AR(1) coefficient, θDS1 , when the estimating equation includes a constant,

θDS0 , is 7

E[θ̂DS1 ]− θDS1 = −3θDS1 + 1

n
+O(n−2) = −3e−θ1∆ + 1

n
+O(n−2) . (56)

This translates to the following finite sample bias of auxiliary estimate of the mean reversion

parameter, µ̃1(θ),

E[µ̃1(θ)]− µ̃1(θ) =
1

∆

[
(1− E[θ̂DS1 ])− (1− θDS1 )

]
=

1

∆

3e−θ1∆ + 1

n
+O(n−2) , (57)

as can be verified by examining the relationship between (36) and (51). However, given the con-

tinuous data generating process, the discretized auxiliary model is misspecified (Lo, 1988), and the

auxiliary parameter estimates contain a discretization bias in addition to the finite sample bias

E[µ̃1(θ)]− θ1 = E[µ̃1(θ)]− µ̃1(θ) + µ̃1(θ)− θ1 ≈
1

∆

3e−θ1∆ + 1

n
+

1

∆
(1− e−θ1∆)− θ1 , (58)

where
1

∆
(1−e−θ1∆)−θ1 is the asymptotic discretization bias. Its value is negative and is dominated

by the positive finite sample bias at small θ1∆ values.

To get an approximation to the bias of the auxiliary constant µ̃0(θ) evaluate its estimator with

the biased µ̃1(θ)

µ̃0(θ) = yt − (1− E[µ̃1(θ)])yt−∆ . (59)

Replacing E[yt−∆] with E[yt−∆] = θ0/θ1 one gets

E[µ̃0(θ)] =
θ0

θ1
E[µ̃1(θ)] = θ0

E[µ̃1(θ)]

θ1
= θ0

(
1 +

E[µ̃1(θ)]− θ1

θ1

)
(60)

≈ θ0

(
3e−θ1∆ + 1

θ1T
+

1− e−θ1∆

θ1∆

)
, (61)

where T = n∆. The second term in (61) is the relative discretization bias of µ̃1(θ), which is close

to 1 for small values of θ1∆. The last expression in (60) indicates that the bias of µ̃0(θ) depends

on the relative bias of µ̃1(θ), which quickly increases as θ1 → 0. Thus, for small positive values

of θ1 the constant term in the simulated auxiliary estimate, µ̃0(θ), will be biased away from zero;

that is, the estimates of positive constants will be biased up and those of negative constants will

be biased down in finite samples.

7Tang and Chen (2007) and Yu (2008) derive the finite sample bias of a directly estimated mean reversion
parameter, θ1, up to second order. Theirs is a refinement of the Marriott and Pope (1954) result for direct estimation
of the continuous time process.
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For θ0 = 0.01, θ1 = 0.1, δ = 1/50, and n = 1000, the analytical expressions above give

bias(µ̃0(θ)) ≈ 0.02 and bias(µ̃1(θ)) ≈ 0.2.
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Figure 2: Red dashed 45◦ line: theoretical unbiased estimator. Blue line: mean of 1000 estimates
of the mean reversion parameter µ1 as a function of θ1. The estimates are based on weekly obser-
vations. The difference between the left and right diagrams is the choice of the unit period - left:
∆ = 1 (parameter values in weekly terms), right: ∆ = 1/50 (parameter values in annual terms).
The generated data are the same both, left and right. The range of θ1 and θ∗1 is shown on the
horizontal axis, and the remaining parameters are being held constant at θ0 = 0.1, θ2 = 0.1/

√
50,

and θ∗0 = 0.1, θ∗2 = 0.1. The bottom diagrams show a magnified portion of the top diagrams close
to 0. The choice of the unit period has a scaling effect, but the relative bias is the same for both
unit period choices. The top diagrams illustrate that the finite sample bias dominates close to 0,
but at θ1 = 0.1 or θ∗1 = 5 the discretization bias takes over.
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Figure 3: Objective functions of score based EMM, binding function based EMM-2, and II estima-
tors. Table 1 displays the estimates (green dot).
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Figure 4: LR-type statistics for testing H0 : θ1 = θ0
1 as functions of θ0

1 in the just identified model.
”est” represents the estimate (green dot) and ”int” represents the length of the confidence interval.
The auxiliary estimate is µ̃1 = 0.2645, and Table 1 displays the structural estimates (green dot).
Red line=true value of θ1 = 0.1.
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Figure 5: LR-type statistics for testing H0 : θ1 = θ0
1 as functions of θ0

1 in the over-identified model.
”est” represents the structural estimate (green dot) and ”int” represents the length of the confidence
interval. The auxiliary estimate is µ̃=0.2645. Red line=true value of θ1 = 0.1
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Figure 8: Distribution of θ0, θ1, and θ2 estimates in a 3 × 3 just-identified model with θ =
(0.01, 0.1, 0.1), and T = 20 based on simulations from exact discretization with S = 20, ∆ = 1/50.
The red line represents the true value, blue dot the mean of the estimates, and the yellow arrow
the RMSE of the estimates.
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Figure 9: Distribution of θ1 estimates in a 1 × 3 over-identified model with θ = (0, 0.66, 7.071),
and T = 20 based on simulations from exact discretization with S = 20, ∆ = 1/50. The red line
represents the true value, blue dot the mean of the estimates, and the yellow arrow the RMSE of
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Figure 10: Impact of simulation size on the just-identified IL and IM estimators of θ1 for θ =
(0, 0.66, 7.071), T = 20, ∆ = 1/50. The red line represents the true θ1 = 0.66, the green line is the
density of the auxiliary estimator, and the blue lines are the density of the indirect estimator (left
IL, right IM), and its mean.
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Figure 11: Impact of simulation size on the over-identified IL and IM estimators of θ1 for θ =
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Figure 13: Simulated binding function of L type estimator, µ̃IL
0 (θ), as a function of θ0 and θ1. θ2 is

being held fixed at its just identified estimate. Color notation: blue = true value: θ = (0.01, 0.1, 0.1);
green = just identified estimate: θ̂IL = (0.1164, 0.5808, 0.1002); grey = over-identified estimate:
θ̂IL

1 = 0.1500.
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Figure 17: Finding the distribution of the θ1 estimates by mapping the distribution of the µ̃1

estimates onto θ1. The bias of the θ1 estimator depends on the bias present in the binding function.
An unbiased binding function µ1(θ) results in the same bias in θ̂1 as there is in µ̃1 (top right). A
linear binding function shifted by the amount of bias would eliminate the bias present in µ̃1, that is,
it would result in a mean unbiased θ1 estimator (lower left). If the binding function is non-linear,
full bias correction of θ̂1 will not be achieved (lower right).
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Figure 18: Distribution of θ1 estimates in a 1×1 just-identified model with θ = (0.01, 0.1, 0.1), and
θ = (0, 0.66, 7.071), and T = 20 based on simulations from exact discretization with S = 20, ∆ =
1/50. The red line represents the true value, blue dot the mean of the estimates, and the yellow
arrow the RMSE of the estimates.

53



L Objective Function

theta[1]

th
et

a[
0]

 2 

 4 

 6 
 6

 

 8 
 8

 

 10 

 1
0 

 12 

 1
2 

 14 

 1
4 

 16 

 1
6 

 18 

 18 

 20 

 2
0 

 22 

 2
2 

 24 

 2
4 

 26 

 2
6 

 28 

 2
8 

 30 

 3
0 

 32 

 3
2 

 34 

 3
4 

 36 

 3
6 

 36 

 38 

 3
8 

 38 

 4
0 

 40 

 4
2 

 42 

 4
4 

 44 

 44 

 44 

 44 

 4
6 

 46 

 46 

 46 

 46 

 46 

0.0 0.1 0.2 0.3 0.4 0.5 0.6

−
0.

05
0.

00
0.

05
0.

10
0.

15

●

●

M Objective Function

theta[1]

th
et

a[
0]

 2 

 2 

 4 

 6 

 6 

 8 

 8 

 10 

 1
0 

 12 

 1
2 

 14 

 1
4 

 16 

 16 

 18 

 1
8 

 2
0 

 20 

 22 

 22 

 2
4 

 24 

 2
6 

 26 

 2
8 

 28  30 

 3
0 

 32 

 3
2 

 34 

 3
4 

 3
4 

 36 

 3
6 

 38  38 

 3
8 

 4
0 

 40 

 4
0 

 42 

 42 

 42 

 42 

 44 

 44 

 44 

 44 

 44 

 46 

0.0 0.1 0.2 0.3 0.4 0.5 0.6

−
0.

05
0.

00
0.

05
0.

10
0.

15

●

●

Figure 19: TOP: Contours of L-type objective function, as a function of θ0 and θ1. θ2 is being
held fixed at its just identified estimate. Color notation: blue = true value: θ = (0.01, 0.1, 0.1);
green = just identified estimate: θ̂IL = (0.1011, 0.3898, 0.1014). BOTTOM: Contours of M-type
objective function, as a function of θ0 and θ1. θ2 is being held fixed at its just identified estimate.
Color notation: blue = true value: θ = (0.01, 0.1, 0.1); green = just identified estimate: θ̂IM =
(0.0513, 0.1943, 0.1013).
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Average estimation time

EN1 EL1 EA1 EN2 EL2 EA2 EM2 IN IL IA IM

Simulations from exact solution

True θ = (0.01, 0.1, 0.1), T = 20, ∆ = 1/50. Unconstrained estimation.

0.03 5.15 5.92 0.09 4.16 5.79 11.40 0.01 4.03 5.65 11.06

Simulations from exact solution

True θ = (0.01, 0.1, 0.1), T = 20, ∆ = 1/50. Constrained estimation.

0.03 2.99 4.66 0.08 2.50 4.27 11.64 0.01 2.40 4.23 11.57

Simulations from exact solution

True θ = (0, 0.66, 7.071), T = 20, ∆ = 1/50. Constrained estimation.

0.03 3.09 4.72 0.08 2.69 4.60 5.75 0.01 2.61 4.61 5.55

Table 5: Average estimation time in seconds.

Rejection frequencies of likelihood ratio type tests

EN1 EL1 EA1 EN2 EL2 EA2 EM2 IN IL IA IM

Simulations from exact solution

True θ = (0.01, 0.1, 0.1), T = 20, ∆ = 1/50. Unconstrained estimation.

0.767 0.760 0.728 0.129 0.114 0.116 0.419 0.121 0.112 0.113 0.415

Simulations from exact solution

True θ = (0.01, 0.1, 0.1), T = 20, ∆ = 1/50. Constrained estimation.

0.767 0.760 0.728 0.129 0.114 0.116 0.419 0.121 0.112 0.113 0.415

Simulations from exact solution

True θ = (0, 0.66, 7.071), T = 20, ∆ = 1/50. Constrained estimation.

0.336 0.330 0.323 0.077 0.079 0.080 0.137 0.073 0.071 0.073 0.130

Table 6: Empirical rejection frequencies of likelihood ratio type tests at 5% nominal level for 1000
Monte Carlo simulations.

Rejection frequencies of likelihood ratio type tests of θ1

EN1 EL1 EA1 EN2 EL2 EA2 EM2 IN IL IA IM

Simulations from exact solution

True θ = (0.01, 0.1, 0.1), T = 20, ∆ = 1/50. Unconstrained estimation.

0.698 0.640 0.593 0.197 0.169 0.175 0.130 0.210 0.176 0.183 0.149

Simulations from exact solution

True θ = (0.01, 0.1, 0.1), T = 20, ∆ = 1/50. Constrained estimation.

0.698 0.640 0.593 0.200 0.172 0.176 0.132 0.210 0.176 0.183 0.149

Simulations from exact solution

True θ = (0, 0.66, 7.071), T = 20, ∆ = 1/50. Constrained estimation.

0.263 0.251 0.244 0.085 0.076 0.076 0.079 0.086 0.078 0.078 0.083

Table 7: Empirical rejection frequencies of likelihood ratio type tests of θ1 at 5% nominal level for
1000 Monte Carlo simulations.

56



P
a
ra

m
et

er
es

ti
m

a
te

s
in

li
n

ea
r

o
v
er

ID
m

o
d

el

Q
M
L
E

E
X
A

O
L
S

E
N

1
E
L

1
E
A

1
E
N

2
E
L

2
E
A

2
E
M

2
I
N

I
L

I
A

I
M

S
im

u
la

ti
o
n

s
fr

o
m

ex
a
ct

so
lu

ti
o
n

,
tr

u
e
θ

=
(0
.0

1
,0
.1
,0
.1

),
T

=
2
0
,

∆
=

1
/
5
0
.

C
o
n

st
ra

in
ed

es
ti

m
a
ti

o
n

.
θ 1

0
.3

7
8
2

0
.1

9
4
6

0
.1

9
3
2

1
.4

2
0
1

1
.5

5
8
2

1
.5

3
4
2

0
.1

9
3
8

0
.1

8
8
5

0
.1

8
9
9

0
.1

2
7
1

0
.1

9
5
2

0
.1

9
0
1

0
.1

9
1
4

0
.1

2
8
3

(
0
.2

7
8
2
)

(
0
.0

9
4
6
)

(
0
.0

9
3
2
)

(
1
.3

2
0
1
)

(
1
.4

5
8
2
)

(
1
.4

3
4
2
)

(
0
.0

9
3
8
)

(
0
.0

8
8
5
)

(
0
.0

8
9
9
)

(
0
.0

2
7
1
)

(
0
.0

9
5
2
)

(
0
.0

9
0
1
)

(
0
.0

9
1
4
)

(
0
.0

2
8
3
)

[
0
.3

7
4
0
]

[
0
.2

0
2
1
]

[
0
.2

0
1
9
]

[
2
.5

8
4
7
]

[
2
.8

0
8
6
]

[
2
.8

1
5
5
]

[
0
.2

0
1
0
]

[
0
.1

9
9
1
]

[
0
.1

9
9
1
]

[
0
.1

2
7
8
]

[
0
.2

0
2
4
]

[
0
.2

0
0
5
]

[
0
.2

0
0
4
]

[
0
.1

2
8
7
]

S
im

u
la

ti
o
n

s
fr

o
m

ex
a
ct

so
lu

ti
o
n

,
tr

u
e
θ

=
(0
,(

1
−

0
.9

8
6
8
)
∗

5
0

=
0
.6

6
,√

5
0

=
7
.0

7
1
),
T

=
2
0
,

∆
=

1
/
5
0
.

C
o
n

st
ra

in
ed

es
ti

m
a
ti

o
n

.
θ 1

0
.8

9
1
0

0
.7

6
7
9

0
.7

6
2
1

1
.3

7
4
6

1
.3

8
4
2

1
.3

8
9
3

0
.7

6
5
3

0
.7

5
7
3

0
.7

5
7
1

0
.5

4
2
9

0
.7

6
9
6

0
.7

6
1
9

0
.7

6
1
7

0
.5

4
7
4

(
0
.2

3
1
0
)

(
0
.1

0
7
9
)

(
0
.1

0
2
1
)

(
0
.7

1
4
6
)

(
0
.7

2
4
2
)

(
0
.7

2
9
3
)

(
0
.1

0
5
3
)

(
0
.0

9
7
3
)

(
0
.0

9
7
1
)

(
-0

.1
1
7
1
)

(
0
.1

0
9
6
)

(
0
.1

0
1
9
)

(
0
.1

0
1
7
)

(
-0

.1
1
2
6
)

[
0
.4

0
8
5
]

[
0
.3

1
7
0
]

[
0
.3

1
2
2
]

[
1
.6

3
2
5
]

[
1
.6

9
1
3
]

[
1
.6

9
6
3
]

[
0
.3

1
5
8
]

[
0
.3

1
7
1
]

[
0
.3

1
7
7
]

[
0
.3

3
4
6
]

[
0
.3

1
8
5
]

[
0
.3

2
0
0
]

[
0
.3

2
0
6
]

[
0
.3

3
4
9
]

T
ab

le
8
:

M
ea

n
,

em
p

ir
ic

al
b

ia
s

(
)

an
d

R
M

S
E

[
]

of
es

ti
m

at
es

fo
r

10
00

M
on

te
C

ar
lo

si
m

u
la

ti
on

s.

57



Average estimation time

EN1 EL1 EA1 EN2 EL2 EA2 EM2 IN IL IA IM

Simulations from exact solution

True θ = (0.01, 0.1, 0.1), T = 20, ∆ = 1/50. Constrained estimation.

0.03 1.48 3.03 0.03 1.21 2.44 3.08 0.02 1.27 2.39 3.03

Simulations from exact solution

True θ = (0, (1− 0.9868) ∗ 50 = 0.66,
√

50 = 7.071), T = 20, ∆ = 1/50. Constrained estimation.

0.02 0.63 0.88 0.03 0.52 0.87 1.12 0.01 0.51 0.85 1.11

Table 9: Average estimation time in seconds.

Rejection frequencies of over-identification tests

EN1 EL1 EA1 EN2 EL2 EA2 EM2 IN IL IA IM

Simulations from exact solution

True θ = (0.01, 0.1, 0.1), T = 20, ∆ = 1/50. Constrained estimation.

0.439 0.419 0.408 0.152 0.150 0.153 0.254 0.147 0.134 0.137 0.246

Simulations from exact solution

True θ = (0, (1− 0.9868) ∗ 50 = 0.66,
√

50 = 7.071), T = 20, ∆ = 1/50. Constrained estimation.

0.131 0.121 0.121 0.079 0.074 0.073 0.079 0.082 0.070 0.070 0.076

Table 10: Empirical rejection frequencies of over-identification tests at 5% nominal level for 1000
Monte Carlo simulations.

Rejection frequencies of likelihood ratio type tests

EN1 EL1 EA1 EN2 EL2 EA2 EM2 IN IL IA IM

Simulations from exact solution

True θ = (0.01, 0.1, 0.1), T = 20, ∆ = 1/50. Constrained estimation.

0.719 0.724 0.694 0.068 0.077 0.076 0.302 0.075 0.081 0.083 0.304

Simulations from exact solution

True θ = (0, (1− 0.9868) ∗ 50 = 0.66,
√

50 = 7.071), T = 20, ∆ = 1/50. Constrained estimation.

0.379 0.364 0.355 0.051 0.053 0.052 0.129 0.049 0.056 0.054 0.123

Table 11: Empirical rejection frequencies of likelihood ratio type tests at 5% nominal level for 1000
Monte Carlo simulations.
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