ECON 427:

 ECONOMIC

 ECONOMIC

 FORECASTING

 FORECASTING}

Ch7. Exponential smoothing
OTexts.org/fpp2/

Outline

1 Simple exponential smoothing
2 Trend methods
3 Seasonal methods
4 Taxonomy of exponential smoothing methods
5 Innovations state space models
6 ETS in R

Simple methods

Time series $y_{1}, y_{2}, \ldots, y_{T}$.
Random walk forecasts

$$
\hat{y}_{T+h \mid T}=y_{T}
$$

Simple methods

Time series $y_{1}, y_{2}, \ldots, y_{T}$.

Random walk forecasts

$$
\hat{y}_{T+h \mid T}=y_{T}
$$

Average forecasts

$$
\hat{y}_{T+h \mid T}=\frac{1}{T} \sum_{t=1}^{T} y_{t}
$$

Simple methods

Time series $y_{1}, y_{2}, \ldots, y_{T}$.

Random walk forecasts

$$
\hat{y}_{T+h \mid T}=y_{T}
$$

Average forecasts

$$
\hat{y}_{T+h \mid T}=\frac{1}{T} \sum_{t=1}^{T} y_{t}
$$

■ Want something in between that weights most recent data more highly.

- Simple exponential smoothing uses a weighted moving average with weights that decrease exponentially.

Simple Exponential Smoothing

Forecast equation

$$
\hat{\mathbf{y}}_{T+1 \mid T}=\alpha \mathbf{y}_{T}+\alpha(1-\alpha) \boldsymbol{y}_{T-1}+\alpha(1-\alpha)^{2} \boldsymbol{y}_{T-2}+\cdots
$$

where $0 \leq \alpha \leq 1$.

Simple Exponential Smoothing

Forecast equation

$\hat{\mathbf{y}}_{T+1 \mid T}=\alpha \mathbf{y}_{T}+\alpha(1-\alpha) \boldsymbol{y}_{T-1}+\alpha(1-\alpha)^{2} \boldsymbol{y}_{T-2}+\cdots$
where $0 \leq \alpha \leq 1$.
Weights assigned to observations for:

Observation	$\alpha=0.2$	$\alpha=0.4$	$\alpha=0.6$	$\alpha=0.8$
y_{T}	0.2	0.4	0.6	0.8
Y_{T-1}	0.16	0.24	0.24	0.16
Y_{T-2}	0.128	0.144	0.096	0.032
Y_{T-3}	0.1024	0.0864	0.0384	0.0064
Y_{T-4}	$(0.2)(0.8)^{4}$	$(0.4)(0.6)^{4}$	$(0.6)(0.4)^{4}$	$(0.8)(0.2)^{4}$
Y_{T-5}	$(0.2)(0.8)^{5}$	$(0.4)(0.6)^{5}$	$(0.6)(0.4)^{5}$	$(0.8)(0.2)^{5}$

Simple Exponential Smoothing

Component form

Forecast equation $\quad \hat{y}_{t+h \mid t}=\ell_{t}$
Smoothing equation $\quad \ell_{t}=\alpha y_{t}+(1-\alpha) \ell_{t-1}$
$\square \ell_{t}$ is the level (or the smoothed value) of the series at time t.

- $\hat{y}_{t+1 \mid t}=\alpha y_{t}+(1-\alpha) \hat{y}_{t \mid t-1}$

Iterate to get exponentially weighted moving average form.
Weighted average form

$$
\hat{Y}_{T+1 \mid T}=\sum_{j=0}^{T-1} \alpha(1-\alpha)^{j} y_{T-j}+(1-\alpha)^{T} \ell_{0}
$$

Optimisation

- Need to choose value for α and ℓ_{0}
- Similarly to regression - we choose α and ℓ_{0} by minimising SSE:

$$
\text { SSE }=\sum_{t=1}^{T}\left(y_{t}-\hat{y}_{t \mid t-1}\right)^{2} .
$$

■ Unlike regression there is no closed form solution - use numerical optimization.

Example: Oil production

```
oildata <- window(oil, start=1996)
# Estimate parameters
fc <- ses(oildata, h=5)
summary(fc[["model"]])
```

\#\# Simple exponential smoothing
\#\#
\#\# Call:
\#\# ses(y = oildata, h = 5)
\#\#
\#\# Smoothing parameters:
\#\# alpha $=0.8339$
\#\#
\#\# Initial states:
\#\# l = 446.5868
\#\#
\#\# sigma: 29.83

Example: Oil production

Year	Time	Observation	Level	Forecast
	t	y_{t}	ℓ_{t}	$\hat{y}_{t+1 \mid t}$
1995	0		446.59	
1996	1	445.36	445.57	446.59
1997	2	453.20	451.93	445.57
1998	3	454.41	454.00	451.93
1999	4	422.38	427.63	454.00
2000	5	456.04	451.32	427.63
2001	6	440.39	442.20	451.32
2002	7	425.19	428.02	442.20
2003	8	486.21	476.54	428.02
2004	9	500.43	496.46	476.54
2005	10	521.28	517.15	496.46
2006	11	508.95	510.31	517.15
2007	12	488.89	492.45	510.31
2008	13	509.87	506.98	492.45
2009	14	456.72	465.07	506.98
2010	15	473.82	472.36	465.07
2011	16	525.95	517.05	472.36
2012	17	549.83	544.39	517.05
2013	18	542.34	542.68	544.39
	h			$\hat{y}_{T+h \mid T}$
2014	1			542.68

Example: Oil production

```
autoplot(fc) +
    autolayer(fitted(fc), series="Fitted") +
    ylab("Oil (millions of tonnes)") + xlab("Year")
```

Forecasts from Simple exponential smoothing

Outline

1 Simple exponential smoothing
2 Trend methods
3 Seasonal methods
4 Taxonomy of exponential smoothing methods
5 Innovations state space models
6 ETS in R

Holt's linear trend

Component form

Forecast $\quad \hat{y}_{t+h \mid t}=\ell_{t}+h b_{t}$
Level

$$
\ell_{t}=\alpha y_{t}+(1-\alpha)\left(\ell_{t-1}+b_{t-1}\right)
$$

Trend

$$
b_{t}=\beta^{*}\left(\ell_{t}-\ell_{t-1}\right)+\left(1-\beta^{*}\right) b_{t-1}
$$

Holt's linear trend

Component form

Forecast $\quad \hat{y}_{t+h \mid t}=\ell_{t}+h b_{t}$
Level

$$
\ell_{t}=\alpha y_{t}+(1-\alpha)\left(\ell_{t-1}+b_{t-1}\right)
$$

Trend

$$
b_{t}=\beta^{*}\left(\ell_{t}-\ell_{t-1}\right)+\left(1-\beta^{*}\right) b_{t-1},
$$

- Two smoothing parameters α and β^{*}

$$
\left(0 \leq \alpha, \beta^{*} \leq 1\right)
$$

■ ℓ_{t} level: weighted average between y_{t} and one-step ahead forecast for time t, $\left(\ell_{t-1}+b_{t-1}=\hat{y}_{t \mid t-1}\right)$
$\square b_{t}$ slope: weighted average of $\left(\ell_{t}-\ell_{t-1}\right)$ and b_{t-1}, current and previous estimate of slope.

Holt's method in \mathbf{R}

window(ausair, start=1990, end=2004) \%>\%
holt (h=5, PI=FALSE) \%>\%
autoplot()
Forecasts from Holt's method

Damped trend method

Component form

$$
\begin{aligned}
\hat{y}_{t+h \mid t} & =\ell_{t}+\left(\phi+\phi^{2}+\cdots+\phi^{h}\right) b_{t} \\
\ell_{t} & =\alpha y_{t}+(1-\alpha)\left(\ell_{t-1}+\phi b_{t-1}\right) \\
b_{t} & =\beta^{*}\left(\ell_{t}-\ell_{t-1}\right)+\left(1-\beta^{*}\right) \phi b_{t-1} .
\end{aligned}
$$

Damped trend method

Component form

$$
\begin{aligned}
\hat{y}_{t+h \mid t} & =\ell_{t}+\left(\phi+\phi^{2}+\cdots+\phi^{h}\right) b_{t} \\
\ell_{t} & =\alpha y_{t}+(1-\alpha)\left(\ell_{t-1}+\phi b_{t-1}\right) \\
b_{t} & =\beta^{*}\left(\ell_{t}-\ell_{t-1}\right)+\left(1-\beta^{*}\right) \phi b_{t-1} .
\end{aligned}
$$

- Damping parameter $0<\phi<1$.
- If $\phi=1$, identical to Holt's linear trend.
\square As $h \rightarrow \infty, \hat{y}_{T+h \mid T} \rightarrow \ell_{T}+\phi b_{T} /(1-\phi)$.
■ Short-run forecasts trended, long-run forecasts constant.

Example: Air passengers

window(ausair, start=1990, end=2004) \%>\%
holt (damped=TRUE, h=5, PI=FALSE) \%>\% autoplot()

Forecasts from Damped Holt's method

Example: Sheep in Asia

livestock2 <- window(livestock, start=1970,
end=2000)
fit1 <- ses(livestock2)
fit2 <- holt(livestock2)
fit3 <- holt(livestock2, damped = TRUE)

accuracy(fit1, livestock)
accuracy(fit2, livestock)
accuracy(fit3, livestock)

Example: Sheep in Asia

	SES	Linear trend	Damped trend
α	1.00	0.98	0.97
β^{*}		0.00	0.00
ϕ			0.98
ℓ_{0}	263.90	251.46	251.89
b_{0}		4.99	6.29
Training RMSE	14.77	13.98	14.00
Test RMSE	25.46	11.88	14.73
Test MAE	20.38	10.71	13.30
Test MAPE	4.60	2.54	3.07
Test MASE	2.26	1.19	1.48

Your turn

eggs contains the price of a dozen eggs in the United States from 1900-1993

1. Use SES and Holt's method (with and without damping) to forecast "future" data.
[Hint: use h=100 so you can clearly see the differences between the options when plotting the forecasts.]Which method gives the best training RMSE?
3 Are these RMSE values comparable?
2. Do the residuals from the best fitting method look like white noise?

Outline

1 Simple exponential smoothing
2 Trend method's
3 Seasonal methods
4 Taxonomy of exponential smoothing methods
5 Innovations state space models
6 ETS in R

Holt-Winters additive method

Holt and Winters extended Holt's method to capture seasonality.

Component form

$$
\begin{aligned}
\hat{y}_{t+h \mid t} & =\ell_{t}+h b_{t}+s_{t+h-m(k+1)} \\
\ell_{t} & =\alpha\left(y_{t}-s_{t-m}\right)+(1-\alpha)\left(\ell_{t-1}+b_{t-1}\right) \\
b_{t} & =\beta^{*}\left(\ell_{t}-\ell_{t-1}\right)+\left(1-\beta^{*}\right) b_{t-1} \\
s_{t} & =\gamma\left(y_{t}-\ell_{t-1}-b_{t-1}\right)+(1-\gamma) s_{t-m}
\end{aligned}
$$

■ $k=$ integer part of $(h-1) / m$. Ensures estimates from the final year are used for forecasting.
■ Parameters: $0 \leq \alpha \leq 1,0 \leq \beta^{*} \leq 1,0 \leq \gamma \leq 1-\alpha$ and $m=$ period of seasonality (e.g. $m=4$ for quarterly data).

Holt-Winters additive method

■ Seasonal component is usually expressed as

$$
s_{t}=\gamma^{*}\left(y_{t}-\ell_{t}\right)+\left(1-\gamma^{*}\right) s_{t-m} .
$$

- Substitute in for ℓ_{t} :
$s_{t}=\gamma^{*}(1-\alpha)\left(y_{t}-\ell_{t-1}-b_{t-1}\right)+\left[1-\gamma^{*}(1-\alpha)\right] s_{t-m}$
■ We set $\gamma=\gamma^{*}(1-\alpha)$.
- The usual parameter restriction is $0 \leq \gamma^{*} \leq 1$, which translates to $0 \leq \gamma \leq(1-\alpha)$.

Holt-Winters multiplicative method

For when seasonal variations are changing proportional to the level of the series.

Component form

$$
\begin{aligned}
\hat{y}_{t+h \mid t} & =\left(\ell_{t}+h b_{t}\right) s_{t+h-m(k+1)} . \\
\ell_{t} & =\alpha \frac{y_{t}}{s_{t-m}}+(1-\alpha)\left(\ell_{t-1}+b_{t-1}\right) \\
b_{t} & =\beta^{*}\left(\ell_{t}-\ell_{t-1}\right)+\left(1-\beta^{*}\right) b_{t-1} \\
s_{t} & =\gamma \frac{y_{t}}{\left(\ell_{t-1}+b_{t-1}\right)}+(1-\gamma) s_{t-m}
\end{aligned}
$$

- k is integer part of $(h-1) / m$.
- With additive method s_{t} is in absolute terms: within each year $\sum_{i} s_{i} \approx 0$.
- With multiplicative method s_{t} is in relative terms:
within each year $\sum_{i} s_{i} \approx m$.

Example: Visitor Nights

aust <- window(austourists,start=2005)
fit1 <- hw(aust, seasonal="additive")
fit2 <- hw(aust, seasonal="multiplicative")

- Data
- HW additive forecasts
- HW multiplicative forecasts

Estimated components

Additive states

Multiplicative states

Holt-Winters damped method

Often the single most accurate forecasting method for seasonal data:

$$
\begin{aligned}
\hat{y}_{t+h \mid t} & =\left[\ell_{t}+\left(\phi+\phi^{2}+\cdots+\phi^{h}\right) b_{t}\right] s_{t+h-m(k+1)} \\
\ell_{t} & =\alpha\left(y_{t} / s_{t-m}\right)+(1-\alpha)\left(\ell_{t-1}+\phi b_{t-1}\right) \\
b_{t} & =\beta^{*}\left(\ell_{t}-\ell_{t-1}\right)+\left(1-\beta^{*}\right) \phi b_{t-1} \\
s_{t} & =\gamma \frac{y_{t}}{\left(\ell_{t-1}+\phi b_{t-1}\right)}+(1-\gamma) s_{t-m}
\end{aligned}
$$

Your turn

Apply Holt-Winters' multiplicative method to the gas data.

1 Why is multiplicative seasonality necessary here?
2. Experiment with making the trend damped.
${ }_{3}$ Check that the residuals from the best method look like white noise.

Outline

1 Simple exponential smoothing

2 Trend methods

3 Seasonal methods
4 Taxonomy of exponential smoothing methods
5 Innovations state space models
6 ETS in R

Exponential smoothing methods

(N, N): Simple exponential smoothing
(A, N): Holt's linear method
($\left.\mathrm{A}_{\mathrm{d}}, \mathrm{N}\right)$: Additive damped trend method
(A,A): Additive Holt-Winters' method
(A,M): Multiplicative Holt-Winters' method
$\left(A_{d}, M\right): \quad$ Damped multiplicative Holt-Winters' method

Recursive formulae

Trend

N

	N	A	M
N	$\hat{y}_{t+h \mid t}=\ell_{t}$	$\hat{y}_{t+h \mid t}=\ell_{t}+s_{t+h-m(k+1)}$	$\hat{y}_{t+h \mid t}=\ell_{t} s_{t+h-m(k+1)}$
	$\ell_{t}=\alpha y_{t}+(1-\alpha) \ell_{t-1}$	$\ell_{t}=\alpha\left(y_{t}-s_{t-m}\right)+(1-\alpha) \ell_{t-1}$	$\ell_{t}=\alpha\left(y_{t} / s_{t-m}\right)+(1-\alpha) \ell_{t-1}$
		$s_{t}=\gamma\left(y_{t}-\ell_{t-1}\right)+(1-\gamma) s_{t-m}$	$s_{t}=\gamma\left(y_{t} / \ell_{t-1}\right)+(1-\gamma) s_{t-m}$
A	$\hat{y}_{t+h \mid t}=\ell_{t}+h b_{t}$	$\hat{y}_{t+h \mid t}=\ell_{t}+h b_{t}+s_{t+h-m(k+1)}$	$\hat{y}_{t+h \mid t}=\left(\ell_{t}+h b_{t}\right) s_{t+h-m(k+1)}$
	$\ell_{t}=\alpha y_{t}+(1-\alpha)\left(\ell_{t-1}+b_{t-1}\right)$	$\ell_{t}=\alpha\left(y_{t}-s_{t-m}\right)+(1-\alpha)\left(\ell_{t-1}+b_{t-1}\right)$	$\ell_{t}=\alpha\left(y_{t} / s_{t-m}\right)+(1-\alpha)\left(\ell_{t-1}+b_{t-1}\right)$
	$b_{t}=\beta^{*}\left(\ell_{t}-\ell_{t-1}\right)+\left(1-\beta^{*}\right) b_{t-1}$	$b_{t}=\beta^{*}\left(\ell_{t}-\ell_{t-1}\right)+\left(1-\beta^{*}\right) b_{t-1}$	$b_{t}=\beta^{*}\left(\ell_{t}-\ell_{t-1}\right)+\left(1-\beta^{*}\right) b_{t-1}$
		$s_{t}=\gamma\left(y_{t}-\ell_{t-1}-b_{t-1}\right)+(1-\gamma) s_{t-m}$	$s_{t}=\gamma\left(y_{t} /\left(\ell_{t-1}+b_{t-1}\right)\right)+(1-\gamma) s_{t-m}$
$A_{\text {d }}$	$\hat{y}_{t+h \mid t}=\ell_{t}+\phi_{h} b_{t}$	$\hat{y}_{t+h \mid t}=\ell_{t}+\phi_{h} b_{t}+s_{t+h-m(k+1)}$	$\hat{y}_{t+h \mid t}=\left(\ell_{t}+\phi_{h} b_{t}\right) s_{t+h-m(k+1)}$
	$\ell_{t}=\alpha y_{t}+(1-\alpha)\left(\ell_{t-1}+\phi b_{t-1}\right)$	$\ell_{t}=\alpha\left(y_{t}-s_{t-m}\right)+(1-\alpha)\left(\ell_{t-1}+\phi b_{t-1}\right)$	$\ell_{t}=\alpha\left(y_{t} / s_{t-m}\right)+(1-\alpha)\left(\ell_{t-1}+\phi b_{t-1}\right)$
	$b_{t}=\beta^{*}\left(\ell_{t}-\ell_{t-1}\right)+\left(1-\beta^{*}\right) \phi b_{t-1}$	$b_{t}=\beta^{*}\left(\ell_{t}-\ell_{t-1}\right)+\left(1-\beta^{*}\right) \phi b_{t-1}$	$b_{t}=\beta^{*}\left(\ell_{t}-\ell_{t-1}\right)+\left(1-\beta^{*}\right) \phi b_{t-1}$
		$s_{t}=\gamma\left(y_{t}-\ell_{t-1}-\phi b_{t-1}\right)+(1-\gamma) s_{t-m}$	$s_{t}=\gamma\left(y_{t} /\left(\ell_{t-1}+\phi b_{t-1}\right)\right)+(1-\gamma) s_{t-m}$

R functions

- Simple exponential smoothing: no trend.
ses (y)
■ Holt's method: linear trend.
holt(y)
- Damped trend method.
holt (y, damped=TRUE)
■ Holt-Winters methods
hw(y, damped=TRUE, seasonal="additive")
hw (y, damped=FALSE, seasonal="additive")
hw(y, damped=TRUE, seasonal="multiplicative")
hw(y, damped=FALSE, seasonal="multiplicative")
- Combination of no trend with seasonality not possible using these functions.

Outline

1 Simple exponential smoothing
2 Trend method's
3 Seasonal methods
4 Taxonomy of exponential smoothing methods
5 Innovations state space models
6 ETS in R

Methods v Models

Exponential smoothing methods

\square Algorithms that return point forecasts.

Methods v Models

Exponential smoothing methods

\square Algorithms that return point forecasts.
Innovations state space models

- Generate same point forecasts but can also generate forecast intervals.
- A stochastic (or random) data generating process that can generate an entire forecast distribution.
- Allow for "proper" model selection.

ETS models

- Each model has an observation equation and transition equations, one for each state (level, trend, seasonal), i.e., state space models.
■ Two models for each method: one with additive and one with multiplicative errors, i.e., in total 18 models.
■ ETS(Error,Trend,Seasonal):
- Error $=\{\mathrm{A}, \mathrm{M}\}$
- Trend $=\left\{\mathrm{N}, \mathrm{A}, \mathrm{A}_{\mathrm{d}}\right\}$
- Seasonal $=\{N, A, M\}$.

Exponential smoothing methods

		Seasonal Component		
	Trend Component	N	A	M
N	(None)	(None)	(Additive)	(Multiplicative)
	N, N	N, A	N, M	
A	(Additive)	A, N	A, A	A, M
A_{d}	(Additive damped)	$\mathrm{A}_{d}, \mathrm{~N}$	$\mathrm{~A}_{d}, \mathrm{~A}$	$\mathrm{~A}_{d}, \mathrm{M}$

Exponential smoothing methods

General notation

\nearrow ETS : ExponenTial Smoothing

Error Trend Seasonal

Exponential smoothing methods

General notation \nearrow ETS : ExponenTial Smoothing

Examples: Error Trend Seasonal
$\mathrm{A}, \mathrm{N}, \mathrm{N}: \quad$ Simple exponential smoothing with additive errors
$\mathrm{A}, \mathrm{A}, \mathrm{N}: \quad$ Holt's linear method with additive errors
$\mathrm{M}, \mathrm{A}, \mathrm{M}: \quad$ Multiplicative Holt-Winters' method with multiplicative errors

Exponential smoothing methods

A model for SES

Component form

Forecast equation $\quad \hat{y}_{t+h \mid t}=\ell_{t}$
Smoothing equation

$$
\ell_{t}=\alpha y_{t}+(1-\alpha) \ell_{t-1}
$$

A model for SES

Component form

Forecast equation $\quad \hat{y}_{t+h \mid t}=\ell_{t}$
Smoothing equation $\quad \ell_{t}=\alpha y_{t}+(1-\alpha) \ell_{t-1}$
Forecast error: $e_{t}=y_{t}-\hat{y}_{t \mid t-1}=y_{t}-\ell_{t-1}$.

A model for SES

Component form

Forecast equation $\quad \hat{y}_{t+h \mid t}=\ell_{t}$
Smoothing equation

$$
\ell_{t}=\alpha y_{t}+(1-\alpha) \ell_{t-1}
$$

Forecast error: $e_{t}=y_{t}-\hat{y}_{t \mid t-1}=y_{t}-\ell_{t-1}$.

Error correction form

$$
\begin{aligned}
y_{t} & =\ell_{t-1}+e_{t} \\
\ell_{t} & =\ell_{t-1}+\alpha\left(y_{t}-\ell_{t-1}\right) \\
& =\ell_{t-1}+\alpha e_{t}
\end{aligned}
$$

A model for SES

Component form

Forecast equation $\quad \hat{y}_{t+h \mid t}=\ell_{t}$
Smoothing equation

$$
\ell_{t}=\alpha y_{t}+(1-\alpha) \ell_{t-1}
$$

Forecast error: $e_{t}=y_{t}-\hat{y}_{t \mid t-1}=y_{t}-\ell_{t-1}$.

Error correction form

$$
\begin{aligned}
y_{t} & =\ell_{t-1}+e_{t} \\
\ell_{t} & =\ell_{t-1}+\alpha\left(y_{t}-\ell_{t-1}\right) \\
& =\ell_{t-1}+\alpha e_{t}
\end{aligned}
$$

Specify probability distribution for e_{t}, we assume

$$
e_{t}=\varepsilon_{t} \sim \operatorname{NID}\left(0, \sigma^{2}\right)
$$

ETS(A,N,N)

Measurement equation $\quad y_{t}=\ell_{t-1}+\varepsilon_{t}$

State equation
 $$
\ell_{t}=\ell_{t-1}+\alpha \varepsilon_{t}
$$

where $\varepsilon_{t} \sim \operatorname{NID}\left(0, \sigma^{2}\right)$.
■ "innovations" or "single source of error" because same error process, ε_{t}.
■ Measurement equation: relationship between observations and states.
■ Transition equation(s): evolution of the state(s) through time.

ETS(A,A,N)

Holt's linear method with additive errors.
■ Assume $\varepsilon_{t}=y_{t}-\ell_{t-1}-b_{t-1} \sim \operatorname{NID}\left(0, \sigma^{2}\right)$.

- Substituting into the error correction equations for Holt's linear method

$$
\begin{aligned}
& y_{t}=\ell_{t-1}+b_{t-1}+\varepsilon_{t} \\
& \ell_{t}=\ell_{t-1}+b_{t-1}+\alpha \varepsilon_{t} \\
& b_{t}=b_{t-1}+\alpha \beta^{*} \varepsilon_{t}
\end{aligned}
$$

■ For simplicity, set $\beta=\alpha \beta^{*}$.

Your turn

- Write down the model for ETS(A,Ad,N)

ETS(A,A,A)

Holt-Winters additive method with additive errors.
Forecast equation $\hat{y}_{t+h \mid t}=\ell_{t}+h b_{t}+s_{t+h-m(k+1)}$
Observation equation $\quad y_{t}=\ell_{t-1}+b_{t-1}+s_{t-m}+\varepsilon_{t}$
State equations $\quad \ell_{t}=\ell_{t-1}+b_{t-1}+\alpha \varepsilon_{t}$

$$
b_{t}=b_{t-1}+\beta \varepsilon_{t}
$$

$$
s_{t}=s_{t-m}+\gamma \varepsilon_{t}
$$

■ Forecast errors: $\varepsilon_{t}=y_{t}-\hat{y}_{t \mid t-1}$
$\square k$ is integer part of $(h-1) / m$.

Your turn

- Write down the model for ETS(A,N,A)

ETS(M,N,N)

SES with multiplicative errors.
\square Specify relative errors $\varepsilon_{t}=\frac{y_{t}-\hat{y}_{t t-1}}{\hat{y}_{t t-1}} \sim \operatorname{NID}\left(0, \sigma^{2}\right)$

- Substituting $\hat{y}_{t \mid t-1}=\ell_{t-1}$ gives:
$\square y_{t}=\ell_{t-1}+\ell_{t-1} \varepsilon_{t}$
$\square e_{t}=y_{t}-\hat{y}_{t \mid t-1}=\ell_{t-1} \varepsilon_{t}$

ETS(M,N,N)

SES with multiplicative errors.
\square Specify relative errors $\varepsilon_{t}=\frac{y_{t}-\hat{y}_{t t-1}}{\hat{y}_{t t-1}} \sim \operatorname{NID}\left(0, \sigma^{2}\right)$
\square Substituting $\hat{y}_{t \mid t-1}=\ell_{t-1}$ gives:

- $y_{t}=\ell_{t-1}+\ell_{t-1} \varepsilon_{t}$
- $e_{t}=y_{t}-\hat{y}_{t \mid t-1}=\ell_{t-1} \varepsilon_{t}$

Measurement equation $\quad y_{t}=\ell_{t-1}\left(1+\varepsilon_{t}\right)$
State equation $\quad \ell_{t}=\ell_{t-1}\left(1+\alpha \varepsilon_{t}\right)$

ETS(M,N,N)

SES with multiplicative errors.
\square Specify relative errors $\varepsilon_{t}=\frac{y_{t}-\hat{y}_{t t-1}}{\hat{y}_{t t-1}} \sim \operatorname{NID}\left(0, \sigma^{2}\right)$
■ Substituting $\hat{y}_{t \mid t-1}=\ell_{t-1}$ gives:

- $y_{t}=\ell_{t-1}+\ell_{t-1} \varepsilon_{t}$
- $e_{t}=y_{t}-\hat{y}_{t \mid t-1}=\ell_{\mathrm{t}-1} \varepsilon_{\mathrm{t}}$

Measurement equation $\quad y_{t}=\ell_{t-1}\left(1+\varepsilon_{t}\right)$
State equation $\quad \ell_{t}=\ell_{t-1}\left(1+\alpha \varepsilon_{t}\right)$

- Models with additive and multiplicative errors with the same parameters generate the same point forecasts but different prediction intervals.

ETS(M,A,N)

Holt's linear method with multiplicative errors.
\square Assume $\varepsilon_{t}=\frac{y_{t}-\left(\ell_{t-1}+b_{t-1}\right)}{\left(\ell_{t-1}+b_{t-1}\right)}$
■ Following a similar approach as above, the innovations state space model underlying Holt's linear method with multiplicative errors is specified as

$$
\begin{aligned}
& y_{t}=\left(\ell_{t-1}+b_{t-1}\right)\left(1+\varepsilon_{t}\right) \\
& \ell_{t}=\left(\ell_{t-1}+b_{t-1}\right)\left(1+\alpha \varepsilon_{t}\right) \\
& b_{t}=b_{t-1}+\beta\left(\ell_{t-1}+b_{t-1}\right) \varepsilon_{t}
\end{aligned}
$$

where again $\beta=\alpha \beta^{*}$ and $\varepsilon_{\mathrm{t}} \sim \operatorname{NID}\left(0, \sigma^{2}\right)$.

Trend	Seasonal		
	N	A	M
N	$\begin{aligned} & y_{t}=\ell_{t-1}+\varepsilon_{t} \\ & \ell_{t}=\ell_{t-1}+\alpha \varepsilon_{t} \end{aligned}$	$\begin{aligned} & y_{t}=\ell_{t-1}+s_{t-m}+\varepsilon_{t} \\ & \ell_{t}=\ell_{t-1}+\alpha \varepsilon_{t} \\ & s_{t}=s_{t-m}+\gamma \varepsilon_{t} \end{aligned}$	$\begin{aligned} & y_{t}=\ell_{t-1} s_{t-m}+\varepsilon_{t} \\ & \ell_{t}=\ell_{t-1}+\alpha \varepsilon_{t} / s_{t-m} \\ & s_{t}=s_{t-m}+\gamma \varepsilon_{t} / \ell_{t-1} \end{aligned}$
A	$\begin{aligned} y_{t} & =\ell_{t-1}+b_{t-1}+\varepsilon_{t} \\ \ell_{t} & =\ell_{t-1}+b_{t-1}+\alpha \varepsilon_{t} \\ b_{t} & =b_{t-1}+\beta \varepsilon_{t} \end{aligned}$	$\begin{aligned} & y_{t}=\ell_{t-1}+b_{t-1}+s_{t-m}+\varepsilon_{t} \\ & \ell_{t}=\ell_{t-1}+b_{t-1}+\alpha \varepsilon_{t} \\ & b_{t}=b_{t-1}+\beta \varepsilon_{t} \\ & s_{t}=s_{t-m}+\gamma \varepsilon_{t} \end{aligned}$	$\begin{aligned} & y_{t}=\left(\ell_{t-1}+b_{t-1}\right) s_{t-m}+\varepsilon_{t} \\ & \ell_{t}=\ell_{t-1}+b_{t-1}+\alpha \varepsilon_{t} / s_{t-m} \\ & b_{t}=b_{t-1}+\beta \varepsilon_{t} / s_{t-m} \\ & s_{t}=s_{t-m}+\gamma \varepsilon_{t} /\left(\ell_{t-1}+b_{t-1}\right) \end{aligned}$
$\mathrm{A}_{\text {d }}$	$\begin{aligned} & y_{t}=\ell_{t-1}+\phi b_{t-1}+\varepsilon_{t} \\ & \ell_{t}=\ell_{t-1}+\phi b_{t-1}+\alpha \varepsilon_{t} \\ & b_{t}=\phi b_{t-1}+\beta \varepsilon_{t} \end{aligned}$	$\begin{aligned} y_{t} & =\ell_{t-1}+\phi b_{t-1}+s_{t-m}+\varepsilon_{t} \\ \ell_{t} & =\ell_{t-1}+\phi b_{t-1}+\alpha \varepsilon_{t} \\ b_{t} & =\phi b_{t-1}+\beta \varepsilon_{t} \\ s_{t} & =s_{t-m}+\gamma \varepsilon_{t} \end{aligned}$	$\begin{aligned} y_{t} & =\left(\ell_{t-1}+\phi b_{t-1}\right) s_{t-m}+\varepsilon_{t} \\ \ell_{t} & =\ell_{t-1}+\phi b_{t-1}+\alpha \varepsilon_{t} / s_{t-m} \\ b_{t} & =\phi b_{t-1}+\beta \varepsilon_{t} / s_{t-m} \\ s_{t} & =s_{t-m}+\gamma \varepsilon_{t} /\left(\ell_{t-1}+\phi b_{t-1}\right) \end{aligned}$

Multiplicative error models

Trend

	N	\mathbf{A}	M
N	$\begin{aligned} & y_{t}=\ell_{t-1}\left(1+\varepsilon_{t}\right) \\ & \ell_{t}=\ell_{t-1}\left(1+\alpha \varepsilon_{t}\right) \end{aligned}$	$\begin{aligned} & y_{t}=\left(\ell_{t-1}+s_{t-m}\right)\left(1+\varepsilon_{t}\right) \\ & \ell_{t}=\ell_{t-1}+\alpha\left(\ell_{t-1}+s_{t-m}\right) \varepsilon_{t} \\ & s_{t}=s_{t-m}+\gamma\left(\ell_{t-1}+s_{t-m}\right) \varepsilon_{t} \end{aligned}$	$\begin{aligned} y_{t} & =\ell_{t-1} s_{t-m}\left(1+\varepsilon_{t}\right) \\ \ell_{t} & =\ell_{t-1}\left(1+\alpha \varepsilon_{t}\right) \\ s_{t} & =s_{t-m}\left(1+\gamma \varepsilon_{t}\right) \end{aligned}$
A	$\begin{aligned} y_{t} & =\left(\ell_{t-1}+b_{t-1}\right)\left(1+\varepsilon_{t}\right) \\ \ell_{t} & =\left(\ell_{t-1}+b_{t-1}\right)\left(1+\alpha \varepsilon_{t}\right) \\ b_{t} & =b_{t-1}+\beta\left(\ell_{t-1}+b_{t-1}\right) \varepsilon_{t} \end{aligned}$	$\begin{aligned} & y_{t}=\left(\ell_{t-1}+b_{t-1}+s_{t-m}\right)\left(1+\varepsilon_{t}\right) \\ & \ell_{t}=\ell_{t-1}+b_{t-1}+\alpha\left(\ell_{t-1}+b_{t-1}+s_{t-m}\right) \varepsilon_{t} \\ & b_{t}=b_{t-1}+\beta\left(\ell_{t-1}+b_{t-1}+s_{t-m}\right) \varepsilon_{t} \\ & s_{t}=s_{t-m}+\gamma\left(\ell_{t-1}+b_{t-1}+s_{t-m}\right) \varepsilon_{t} \end{aligned}$	$\begin{aligned} y_{t} & =\left(\ell_{t-1}+b_{t-1}\right) s_{t-m}\left(1+\varepsilon_{t}\right) \\ \ell_{t} & =\left(\ell_{t-1}+b_{t-1}\right)\left(1+\alpha \varepsilon_{t}\right) \\ b_{t} & =b_{t-1}+\beta\left(\ell_{t-1}+b_{t-1}\right) \varepsilon_{t} \\ s_{t} & =s_{t-m}\left(1+\gamma \varepsilon_{t}\right) \end{aligned}$
$\mathrm{A}_{\text {d }}$	$\begin{aligned} y_{t} & =\left(\ell_{t-1}+\phi b_{t-1}\right)\left(1+\varepsilon_{t}\right) \\ \ell_{t} & =\left(\ell_{t-1}+\phi b_{t-1}\right)\left(1+\alpha \varepsilon_{t}\right) \\ b_{t} & =\phi b_{t-1}+\beta\left(\ell_{t-1}+\phi b_{t-1}\right) \varepsilon_{t} \end{aligned}$	$\begin{aligned} & y_{t}=\left(\ell_{t-1}+\phi b_{t-1}+s_{t-m}\right)\left(1+\varepsilon_{t}\right) \\ & \ell_{t}=\ell_{t-1}+\phi b_{t-1}+\alpha\left(\ell_{t-1}+\phi b_{t-1}+s_{t-m}\right) \varepsilon_{t} \\ & b_{t}=\phi b_{t-1}+\beta\left(\ell_{t-1}+\phi b_{t-1}+s_{t-m}\right) \varepsilon_{t} \\ & s_{t}=s_{t-m}+\gamma\left(\ell_{t-1}+\phi b_{t-1}+s_{t-m}\right) \varepsilon_{t} \end{aligned}$	$\begin{aligned} & y_{t}=\left(\ell_{t-1}+\phi b_{t-1}\right) s_{t-m}\left(1+\varepsilon_{t}\right) \\ & \ell_{t}=\left(\ell_{t-1}+\phi b_{t-1}\right)\left(1+\alpha \varepsilon_{t}\right) \\ & b_{t}=\phi b_{t-1}+\beta\left(\ell_{t-1}+\phi b_{t-1}\right) \varepsilon_{t} \\ & s_{t}=s_{t-m}\left(1+\gamma \varepsilon_{t}\right) \end{aligned}$

Estimating ETS models

- Smoothing parameters α, β, γ and ϕ, and the initial states $\ell_{0}, b_{0}, s_{0}, s_{-1}, \ldots, s_{-m+1}$ are estimated by maximising the "likelihood" = the probability of the data arising from the specified model.
- For models with additive errors equivalent to minimising SSE.
- For models with multiplicative errors, not equivalent to minimising SSE.
- We will estimate models with the ets () function in the forecast package.

Innovations state space models

Let $\boldsymbol{x}_{t}=\left(\ell_{t}, b_{t}, s_{t}, s_{t-1}, \ldots, s_{t-m+1}\right)$ and $\varepsilon_{t} \stackrel{\text { iid }}{\sim} N\left(0, \sigma^{2}\right)$.

$$
\begin{aligned}
& y_{t}=\underbrace{h\left(\boldsymbol{x}_{t-1}\right)}_{\mu_{t}}+\underbrace{k\left(\boldsymbol{x}_{t-1}\right) \varepsilon_{t}}_{e_{t}} \\
& \mathbf{x}_{t}=f\left(\mathbf{x}_{t-1}\right)+g\left(\boldsymbol{x}_{t-1}\right) \varepsilon_{t}
\end{aligned}
$$

Additive errok $(\mathrm{fx})=1 . \quad y_{t}=\mu_{\mathrm{t}}+\varepsilon_{\mathrm{t}}$.
Multiplicative errors

$$
\begin{aligned}
& k\left(\boldsymbol{x}_{t-1}\right)=\mu_{t} . \quad y_{t}=\mu_{t}\left(1+\varepsilon_{t}\right) . \\
& \varepsilon_{t}=\left(y_{t}-\mu_{t}\right) / \mu_{t} \text { is relative error. }
\end{aligned}
$$

Innovations state space models

Estimation

$$
\begin{aligned}
L^{*}\left(\boldsymbol{\theta}, \mathbf{x}_{0}\right) & =n \log \left(\sum_{t=1}^{n} \varepsilon_{t}^{2} / k^{2}\left(\mathbf{x}_{t-1}\right)\right)+2 \sum_{t=1}^{n} \log \left|k\left(\mathbf{x}_{t-1}\right)\right| \\
& =-2 \log (\text { Likelihood })+\text { constant }
\end{aligned}
$$

■ Estimate parameters $\boldsymbol{\theta}=(\alpha, \beta, \gamma, \phi)$ and initial states $\mathbf{x}_{0}=\left(\ell_{0}, b_{0}, s_{0}, s_{-1}, \ldots, s_{-m+1}\right)$ by minimizing L^{*}.

Parameter restrictions

Usual region

- Traditional restrictions in the methods $0<\alpha, \beta^{*}, \gamma^{*}, \phi<1$ (equations interpreted as weighted averages).
- In models we set $\beta=\alpha \beta^{*}$ and $\gamma=(1-\alpha) \gamma^{*}$.

■ Therefore $0<\alpha<1, \quad 0<\beta<\alpha$ and $0<\gamma<1-\alpha$.
$\square 0.8<\phi<0.98$ - to prevent numerical difficulties.

Parameter restrictions

Usual region

- Traditional restrictions in the methods $0<\alpha, \beta^{*}, \gamma^{*}, \phi<1$ (equations interpreted as weighted averages).
- In models we set $\beta=\alpha \beta^{*}$ and $\gamma=(1-\alpha) \gamma^{*}$.
- Therefore $0<\alpha<1, \quad 0<\beta<\alpha$ and $0<\gamma<1-\alpha$.
- $0.8<\phi<0.98$ - to prevent numerical difficulties.

Admissible region

- To prevent observations in the distant past having a continuing effect on current forecasts.
- Usually (but not always) less restrictive than the traditional region.
- For example for ETS(A,N,N):
traditional $0<\alpha<1$-admissible is $0<\alpha<2$.

Model selection

Akaike's Information Criterion

$$
\mathrm{AIC}=-2 \log (\mathrm{~L})+2 k
$$

where L is the likelihood and k is the number of parameters initial states estimated in the model.

Model selection

Akaike's Information Criterion

$$
\mathrm{AIC}=-2 \log (\mathrm{~L})+2 k
$$

where L is the likelihood and k is the number of parameters initial states estimated in the model.

Corrected AIC

$$
\mathrm{AIC}_{\mathrm{c}}=\mathrm{AIC}+\frac{2(k+1)(k+2)}{T-k}
$$

which is the AIC corrected (for small sample bias).

Model selection

Akaike's Information Criterion

$$
\mathrm{AIC}=-2 \log (\mathrm{~L})+2 k
$$

where L is the likelihood and k is the number of parameters initial states estimated in the model.

Corrected AIC

$$
\mathrm{AIC}_{\mathrm{c}}=\mathrm{AIC}+\frac{2(\mathrm{k}+1)(\mathrm{k}+2)}{T-k}
$$

which is the AIC corrected (for small sample bias).

Bayesian Information Criterion

$$
\mathrm{BIC}=\mathrm{AIC}+k(\log (T)-2)
$$

Automatic forecasting

From Hyndman et al. (IJF, 2002):

- Apply each model that is appropriate to the data. Optimize parameters and initial values using MLE (or some other criterion).
■ Select best method using AICc:
■ Produce forecasts using best method.
■ Obtain forecast intervals using underlying state space model.

Method performed very well in M3 competition.

Some unstable models

- Some of the combinations of (Error, Trend, Seasonal) can lead to numerical difficulties; see equations with division by a state.
- These are: ETS(A,N,M), ETS(A,A,M), ETS(A, $\left.A_{d}, M\right)$.

■ Models with multiplicative errors are useful for strictly positive data, but are not numerically stable with data containing zeros or negative values. In that case only the six fully additive models will be applied.

Exponential smoothing models

Multiplicative Error

Trend Component	N (None)	A (Additive)	M (Multiplicative)
N (None)	M,N,N	M,N,A	M,N,M
A (Additive)	M,A,N	M,A,A	M,A,M
$\mathrm{A}_{\mathrm{d}} \quad$ (Additive damped)	$\mathrm{M}, \mathrm{A}_{\mathrm{d}}, \mathrm{N}$	$\mathrm{M}, \mathrm{A}_{\mathrm{d}}, \mathrm{A}$	$\mathrm{M}, \mathrm{A}_{\mathrm{d}}, \mathrm{M}$

Example: International tourists

```
aust <- window(austourists, start=2005)
fit <- ets(aust)
summary(fit)
## ETS(M,A,M)
##
## Call:
## ets(y = aust)
##
## Smoothing parameters:
## alpha = 0.1908
## beta = 0.0392
## gamma = 2e-04
##
## Initial states:
## l = 32.3679
## b = 0.9281
## s = 1.022 0.9628 0.7683 1.247
##
## sigma: 0.0383
##
## AIC AICC BIC
```


Example: International tourists

Model selected: ETS(M,A,M)

$$
\begin{aligned}
& y_{t}=\left(\ell_{t-1}+b_{t-1}\right) s_{t-m}\left(1+\varepsilon_{t}\right) \\
& \ell_{t}=\left(\ell_{t-1}+b_{t-1}\right)\left(1+\alpha \varepsilon_{t}\right) \\
& b_{t}=b_{t-1}+\beta\left(\ell_{t-1}+b_{t_{1}}\right) \varepsilon_{t} \\
& s_{t}=s_{t-m}\left(1+\gamma \varepsilon_{t}\right) . \\
& \hat{\alpha}=0.1908, \hat{\beta}=0.0392, \text { and } \hat{\gamma}=0.00019 .
\end{aligned}
$$

Example: International tourists

autoplot(fit)

Components of ETS(M,A,M) method

Example: International tourists

```
cbind('Residuals' = residuals(fit),
    'Forecast errors' = residuals(fit, type='response')) %>%
    autoplot(facet=TRUE) + xlab("Year") + ylab("")
```


Residuals

Response residuals

$$
\hat{e}_{t}=y_{t}-\hat{y}_{t \mid t-1}
$$

Innovation residuals

Additive error model:

$$
\hat{\varepsilon}_{t}=y_{t}-\hat{y}_{t \mid t-1}
$$

Multiplicative error model:

$$
\hat{\varepsilon}_{t}=\frac{y_{t}-\hat{y}_{t \mid t-1}}{\hat{y}_{t \mid t-1}}
$$

Forecasting with ETS models

Point forecasts: iterate the equations for $t=T+1, T+2, \ldots, T+h$ and set all $\varepsilon_{t}=0$ for $t>T$.

Forecasting with ETS models

Point forecasts: iterate the equations for $t=T+1, T+2, \ldots, T+h$ and set all $\varepsilon_{t}=0$ for $t>T$.

- Not the same as $\mathrm{E}\left(y_{t+h} \mid \mathbf{x}_{t}\right)$ unless trend and seasonality are both additive.
■ Point forecasts for ETS(A, x, y) are identical to $\operatorname{ETS}(\mathrm{M}, \mathrm{x}, \mathrm{y})$ if the parameters are the same.

Example: ETS(A,A,N)

$$
\begin{aligned}
y_{T+1} & =\ell_{T}+b_{T}+\varepsilon_{T+1} \\
\hat{y}_{T+1 \mid T} & =\ell_{T}+b_{T} \\
y_{T+2} & =\ell_{T+1}+b_{T+1}+\varepsilon_{T+2} \\
& =\left(\ell_{T}+b_{T}+\alpha \varepsilon_{T+1}\right)+\left(b_{T}+\beta \varepsilon_{T+1}\right)+\varepsilon_{T+2} \\
\hat{y}_{T+2 \mid T} & =\ell_{T}+2 b_{T}
\end{aligned}
$$

etc.

Example: ETS(M,A,N)

$$
\begin{aligned}
& y_{T+1}=\left(\ell_{T}+b_{T}\right)\left(1+\varepsilon_{T+1}\right) \\
& \hat{y}_{T+1 \mid T}=\ell_{T}+b_{T} . \\
& y_{T+2}=\left(\ell_{T+1}+b_{T+1}\right)\left(1+\varepsilon_{T+2}\right) \\
&=\left\{\left(\ell_{T}+b_{T}\right)\left(1+\alpha \varepsilon_{T+1}\right)+\left[b_{T}+\beta\left(\ell_{T}+b_{T}\right) \varepsilon_{T+1}\right]\right\}\left(1+\varepsilon_{T+2}\right) \\
& \hat{y}_{T+2 \mid T}=\ell_{T}+2 b_{T} \\
& \text { etc. }
\end{aligned}
$$

Forecasting with ETS models

Prediction intervals: cannot be generated using the methods, only the models.

- The prediction intervals will differ between models with additive and multiplicative errors.
■ Exact formulae for some models.
- More general to simulate future sample paths, conditional on the last estimate of the states, and to obtain prediction intervals from the percentiles of these simulated future paths.
\square Options are available in R using the forecast function in the forecast package.

Prediction intervals

PI for most ETS models: $\hat{y}_{T+h \mid T} \pm c \sigma_{h}$, where c depends on coverage probability and σ_{h} is forecast standard deviation.

$$
\begin{aligned}
& \text { (A,N,N) } \quad \sigma_{h}=\sigma^{2}\left[1+\alpha^{2}(h-1)\right] \\
& (\mathrm{A}, \mathrm{~A}, \mathrm{~N}) \quad \sigma_{h}=\sigma^{2}\left[1+(h-1)\left\{\alpha^{2}+\alpha \beta h+\frac{1}{6} \beta^{2} h(2 h-1)\right\}\right] \\
& \left(\mathrm{A}, \mathrm{~A}_{d}, \mathrm{~N}\right) \quad \sigma_{h}=\sigma^{2}\left[1+\alpha^{2}(h-1)+\frac{\beta \phi h}{(1-\phi)^{2}}\{2 \alpha(1-\phi)+\beta \phi\}\right. \\
& \left.-\frac{\beta \phi\left(1-\phi^{h}\right)}{(1-\phi)^{2}\left(1-\phi^{2}\right)}\left\{2 \alpha\left(1-\phi^{2}\right)+\beta \phi\left(1+2 \phi-\phi^{h}\right)\right\}\right] \\
& (\mathrm{A}, \mathrm{~N}, \mathrm{~A}) \quad \sigma_{h}=\sigma^{2}\left[1+\alpha^{2}(h-1)+\gamma k(2 \alpha+\gamma)\right] \\
& (\mathrm{A}, \mathrm{~A}, \mathrm{~A}) \quad \sigma_{h}=\sigma^{2} 1+(h-1)\left\{\alpha^{2}+\alpha \beta h+\frac{1}{6} \beta^{2} h(2 h-1)\right\}+\gamma \mathrm{k}\{2 \alpha+\gamma+\beta \mathrm{m}(\mathrm{k}+1 \\
& \left(\mathrm{A}, \mathrm{~A}_{d}, \mathrm{~A}\right) \quad \sigma_{h}=\sigma^{2}\left[1+\alpha^{2}(h-1)+\frac{\beta \phi h}{(1-\phi)^{2}}\{2 \alpha(1-\phi)+\beta \phi\}\right. \\
& -\frac{\beta \phi\left(1-\phi^{h}\right)}{(1-\phi)^{2}\left(1-\phi^{2}\right)}\left\{2 \alpha\left(1-\phi^{2}\right)+\beta \phi\left(1+2 \phi-\phi^{h}\right)\right\} \\
& \left.+\gamma k(2 \alpha+\gamma)+\frac{2 \beta \gamma \phi}{(1-\phi)\left(1-\phi^{m}\right)}\left\{k\left(1-\phi^{m}\right)-\phi^{m}\left(1-\phi^{m k}\right)\right\}\right] 62
\end{aligned}
$$

Outline

1 Simple exponential smoothing
2 Trend method's
3 Seasonal methods
4 Taxonomy of exponential smoothing methods
5 Innovations state space models
6 ETS in R

Example: drug sales

```
ets(h02)
## ETS(M,Ad,M)
##
## Call:
## ets(y = h02)
##
## Smoothing parameters:
## alpha = 0.1953
## beta = 1e-04
## gamma = 1e-04
## phi = 0.9798
##
## Initial states:
## l = 0.3945
## b = 0.0085
## s = 0.874 0.8197 0.7644 0.7693 0.6941 1.284
## 1.326 1.177 1.162 1.095 1.042 0.9924
##
## sigma: 0.0676
##
## AIC AICc BIC
## -122.91 -119.21 -63.18
```


Example: drug sales

```
ets(h02, model="AAA", damped=FALSE)
## ETS(A,A,A)
##
## Call:
## ets(y = h02, model = "AAA", damped = FALSE)
##
## Smoothing parameters:
## alpha = 0.1672
## beta = 0.0084
## gamma = 1e-04
##
## Initial states:
## l = 0.3895
## b = 0.0116
## s = -0.1058 -0.1359 -0.1875 -0.1803 -0.2414 0.2097
## 0.2493 0.1426 0.1411 0.0823 0.0293-0.0033
##
## sigma: 0.0642
##
## AIC AICc BIC
## -18.26 -14.97 38.14
```


The ets() function

- Automatically chooses a model by default using the AIC, AICc or BIC.
- Can handle any combination of trend, seasonality and damping
- Ensures the parameters are admissible (equivalent to invertible)
- Produces an object of class "ets".

ets objects

■ Methods: coef(), autoplot(), plot(), summary(), residuals(), fitted(), simulate() and forecast()

- autoplot() shows time plots of the original time series along with the extracted components (level, growth and seasonal).

Example: drug sales

h02 \%>\% ets() \%>\% autoplot()

Components of ETS(M,Ad,M) method

Example: drug sales

h02 \%>\% ets() \%>\% forecast() \%>\% autoplot()

Forecasts from ETS(M,Ad,M)

Example: drug sales

h02 \%>\% ets() \%>\% accuracy()

\#\#	ME	RMSE	MAE	MPE	MAPE	MASE
\#\# Training set 0.003873	0.05097	0.03904	0.1125	5.046	0.644	

h02 \%>\% ets(model="AAA", damped=FALSE) \%>\% accuracy()

\#\#	ME	RMSE	MAE	MPE	MAPE	MASE
\#\# Training set -0.006447	0.0616	0.04949	-1.258	7.142	0.8164	

The ets() function

ets () function also allows refitting model to new data set.

```
train <- window(h02, end=c(2004,12))
test <- window(h02, start=2005)
fit1 <- ets(train)
fit2 <- ets(test, model = fit1)
accuracy(fit2)
```

\#\# ME RMSE MAE MPE MAPE MASE ACF1
\#\# Training set 0.001440 .054060 .04314 -0.4332 5.2180 .6785 -0.4121
accuracy (forecast(fit1,10), test)

\#\#	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1
\#\# Training set	0.003427	0.04453	0.03290	0.1589	4.364	0.558	0.02236
\#\# Test set	-0.077245	0.09158	0.07955	-10.0413	10.252	1.349	-0.04361

\#\#
Theil's U
\#\# Training set NA
\#\# Test set 0.6333

The ets() function in R

```
ets(y, model = "ZZZ", damped = NULL,
    additive.only = FALSE,
    lambda = NULL, biasadj = FALSE,
    lower = c(rep(1e-04, 3), 0.8),
    upper \(=c(\operatorname{rep}(0.9999,3), 0.98)\),
    opt.crit = c("lik","amse","mse","sigma","mae"),
    nmse \(=3\),
    bounds = c("both", "usual", "admissible"),
    ic = c("aicc", "aic", "bic"),
    restrict = TRUE,
    allow.multiplicative.trend = FALSE, ...)
```


The ets() function in R

- y

The time series to be forecast.

- model
use the ETS classification and notation: "N" for none, " A " for additive, " M " for multiplicative, or " Z " for automatic selection. Default ZZZ all components are selected using the information criterion.
- damped

■ If damped=TRUE, then a damped trend will be used (either A_{d} or M_{d}).

- damped=FALSE, then a non-damped trend will used.
- If damped=NULL (default), then either a damped or a non-damped trend will be selected according to the information criterion chosen.

The ets() function in R

■ additive.only
Only models with additive components will be considered if additive. only=TRUE. Otherwise all models will be considered.

- lambda

Box-Cox transformation parameter. It will be ignored if lambda=NULL (default). Otherwise, the time series will be transformed before the model is estimated. When lambda is not NULL, additive. only is set to TRUE.

- biadadj

Uses bias-adjustment when undoing Box-Cox transformation for fitted values.

The ets() function in R

- lower , upper bounds for the parameter estimates of α, β^{*}, γ^{*} and ϕ.
- opt.crit=lik (default) optimisation criterion used for estimation.
- bounds Constraints on the parameters.
- usual region - "bounds=usual";
- admissible region - "bounds=admissible";

■ "bounds=both" (default) requires the parameters to satisfy both sets of constraints.

- ic=aicc (default) information criterion to be used in selecting models.
- restrict=TRUE (default) models that cause numerical problems not considered in model selection.
■ allow.multiplicative.trend allows models with a multiplicative trend.

The forecast () function in R

forecast(object,

$$
\begin{aligned}
& \text { h=ifelse(object\$m>1, } 2 * \text { object } \$ \mathrm{~m}, 10), \\
& \text { level=c(} 80,95 \text {), fan=FALSE, } \\
& \text { simulate=FALSE, bootstrap=FALSE, } \\
& \text { npaths=5000, PI=TRUE, } \\
& \text { lambda=object\$lambda, biasadj=FALSE,...) }
\end{aligned}
$$

■ object: the object returned by the ets() function.

- h: the number of periods to be forecast.
- level: the confidence level for the prediction intervals.
- fan: if fan=TRUE, suitable for fan plots.

The forecast () function in R

- simulate: If TRUE, prediction intervals generated via simulation rather than analytic formulae. Even if FALSE simulation will be used if no algebraic formulae exist.
- bootstrap: If bootstrap=TRUE and simulate=TRUE, then simulated prediction intervals use re-sampled errors rather than normally distributed errors.
- npaths: The number of sample paths used in computing simulated prediction intervals.
- PI: If PI=TRUE, then prediction intervals are produced; otherwise only point forecasts are calculated. If PI=FALSE, then level, fan, simulate, bootstrap and npaths are all ignored.

The forecast () function in R

■ lambda: The Box-Cox transformation parameter. Ignored if lambda=NULL. Otherwise, forecasts are back-transformed via inverse Box-Cox transformation.

■ biasadj: Apply bias adjustment after Box-Cox?

Your turn

■ Use ets() on some of these series:
bicoal, chicken, dole, usdeaths, bricksq, lynx, ibmclose, eggs, bricksq, ausbeer

■ Does it always give good forecasts?

- Find an example where it does not work well. Can you figure out why?

