
 1

Outline

● exam 1 material: Java, ADTs, linked lists, run-
time big-O, objects, references and pointers,
iterators, invariants

● exam 2 material: generic types and container
classes, stacks, queues, recursion, binary
search

● binary trees, binary search trees, tree traversal,
heaps, huffman coding, priority queues, hashing

● sorting: insertion, selection, bubble, mergesort,
heapsort, quicksort

 2

Java Concepts

● recursion
● references and pointers
● objects
● generic types and parametrized classes
● object equality
● object comparison
● iterators for collection classes

 3

Java Concepts: recursion

● as a replacement for loops
● as a way of thinking of operations on lists, arrays (e.g.

binary search)
● for tree operations, especially tree traversal

● also for graph traversals, as long as you can guarantee
termination

● recursion with return value to compute and return
something

● recursion with void method to change or print something
● or a mix of these two

 4

Java Concepts:
references and pointers

● all variables in Java are either one of the 8
basic types, or

● a reference (pointer) to an object
● the reference may be null
● arguments (of a type other than the basic types)

are passed by reference, so
● if they are modified (i.e. if their instance

variables change), the caller can see the
changes

 5

Java Concepts:
Objects and comparisons

● objects
● generic types and parametrized classes

● generic types are only found as parameters to
classes or interfaces

● the corresponding actual type must be an object
type

● object equality
● object comparison

 6

Java Concepts: iterators

● iterators for collection classes
● the iterator object must contain enough information

to return all the contents of the collection class
– one at a time

● using an iterator is (and is meant to be) easy and
convenient

● implementing an iterator can be hard, e.g. for tree
traversal

 7

data structures 1/7
simple data structures

● arrays, ArrayLists, and Vectors
● constant-time access
● linear-time resizing
● n-log-n sorting (mergesort, heapsort)

● stacks
● queues
● both stacks and queues can be implemented using either

linked lists or arrays
● for queues we use circular arrays

– that is, index 0 is the index used after array.length – 1

● huffman trees (needed for huffman coding)

 8

data structures 2/7
priority queues

● needs some way to compare objects
● many implementations:

● heaps
– heaps do not maintain order within a priority level
– unless the key is a combination of priority and order

● arrays of queues
– only fast for relatively small number of priorities

● ordered linked lists, arrays, etc
– adding an element takes linear time

 9

data structures 3/7
linked lists

● linked list class provides all the linked list operations: add, remove, size,
toString, etc

● node class stores the value and next reference (recursive class, has a class
variable of the same type as the class)

● the linked list object keeps a reference to the first node of a linked list
● when we say “linked list”, sometimes we are referring to a linked list, and sometimes to

a linked node
● in-class exercise: in chained hashing, each array element would refer to linked list or to

the first linked node?
● operations at the head (and at the tail, if a tail pointer is kept) take constant

time
● most other operations take linear time
● ordered linked lists

● need comparison to know when to insert, when to stop looking
● search, insertion, deletion all take linear time

 10

data structures 4/7
trees

● root, child, parent, sibling, etc
● tree nodes have zero or more children
● tree traversals: prefix, postfix, and, only for

binary trees, infix
● most tree algorithms are well-suited to recursive

implementation

 11

data structures 5/7
binary trees

● logarithmic depth if the tree is balanced, for
example, a heap

● otherwise, the worst case is linear depth
● many operations take time O(depth)
● other operations, e.g. tree traversal, take time

O(nodes)

 12

data structures 6/7
heaps

● a complete binary tree stored in an array
● heap property: each parent is greater (less)

than either of its children
● when adding, add at the end (bottom) of the

heap, then re-establish the heap property
moving up the tree

● when removing, move the element at the end
(bottom) of the heap to the top, then re-
establish the heap property going down the tree

 13

data structures 7/7
hash tables

● (best-case) constant-time access to keyed data
● hash function returns an int which is used as an

index
● pseudo-randomness (hash function) is used to

distribute data evenly
● different ways of handling collisions: increase

array size, open addressing, chained hashing,
separate storage

 14

algorithms

● linked list operations: add, remove, search
● tree operations: add, remove, search
● ordered list insertion
● binary search
● heap insert and remove
● huffman coding
● prefix-to-infix-to-postfix and viceversa using stacks or

using trees
● solution of different problems using priority queues (e.g.

for huffman coding)

 15

hashing algorithms

● hash functions: adding/XORing contributions
from significant elements
● cryptographic hash functions are slower, but hash

much more thoroughly (and are still constant time)
● chained hashing (array of linked lists)
● open addressing: linear probing, quadratic

probing, double hashing

 16

sorting algorithms

● selection sort -- O(n2)
● bubble sort -- O(n2), but O(n) if array is sorted
● insertion sort -- O(n2), but O(n) if the elements

are at most a constant distance away from their
correct position

● quick sort -- O(n2), but O(n log n) if the pivot is
random and splits the array about evenly

● merge sort -- O(n log n)
● heap sort -- O(n log n)

 17

run-time analysis

● a few typical functions:
● O(log n): binary search
● O(tree depth): going from the root to a leaf or from a leaf to a root: if the tree

is balanced O(log n) – for example a heap, otherwise O(n)
● O(n): traversing a data structure once, e.g. linked list removal, array insertion

or expansion, linear search, best case for bubble sort and insertion sort
● O(n log n): efficient sorting such as heap sort and merge sort, best case for

quicksort
● O(n2): most sorting algorithms, including worst case for insertion sort or quick

sort, best and worst case for selection sort, worst and average case for
bubble sort

● look at the loops and the changes in the loop variables
● and the same for recursion

● might also have to consider big-O memory space usage

 18

solving programming problems

● decompose the problem into reasonable elements
● use a class or method to implement each element
● combine these into a solution
● can analyze the solution for efficiency
● knowing data structures can help in decomposing

the problem
● knowing algorithms can help if the problem is similar

to one solved by an existing algorithm, or if the
problem can be partially solved by an existing
algorithm

 19

concepts

● ADTs, and their representation by classes
● run-time analysis to determine big-O
● tree traversal
● invariants
● many different implementations possible for one

interface, including for lists, queues, and stacks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

