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Outline

● review of Huffman tree implementation (from 
last lecture, and only if requested)

● review of lambda expressions (from ICS 111)
● heaps
● heap storage in arrays
● heap insertion and removal
● priority queues
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an implementation for Huffman trees
data structures

● many possible implementations, this is one 
(textbook, chapter 6.1 and 6.7)

● use several data structures:
● a priority queue to hold the sorted data
● each priority queue element refers to a tree node
● an interior tree node has no value, but has two children
● a leaf node has a value, but has no children
● each node has a frequency of occurrence, which is 

used as a priority in the queue (low priority returned 
first)
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an implementation for Huffman trees
algorithm

● begin by computing the frequency of each value
● perhaps by using a hash table -- explained later

● once the frequency of values is known, insert each value into the 
priority queue, using its frequency as a priority

● remove the front two elements from the queue, create an interior 
node to refer to these two elements, and insert the interior node 
back into the queue with, as priority, the sum of the priorities of the 
two nodes

● once there is only one element left in the queue, this is the huffman 
tree

● a further step would be to build an encoding table from the tree
● in-class exercise: do this given the string "there is no place like 

home"
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lambda expressions

● a lambda expression is an unnamed function
● that can be assigned to a variable
● or passed as a parameter

● so another view is that lambda expressions 
allow function variables

● some languages make heavy use of lambda 
expressions: for example, Javascript and LISP

● older versions of Java (before Java 8) did not 
have lambda expressions
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lambda expressions in Java

● a lambda expression in Java has 3 parts:
● the interface definition, defining the type
● the lambda expression, defining the computation
● the application of the lambda expression
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lambda expressions example

● Comparator<T> defines int compare(T 
t1, T t2)

● Comparator<T> f = (a, b) - > {

  if (a.compareTo(b) > 0) return 1;

  if (a.compareTo(b) == 0)return 0;

  return -1;

}
● int comparison=f(value, a[middle]);

● note: f doesn’t have to be called compare
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Defining the interface

● any interface that declares exactly one method is 
a functional interface, and can be used to declare 
a lambda expression

● common examples include:
● Comparator<T> defines int compare(T a,T b)
● Function<T,R> defines R apply(T t)
● Predicate<T> defines boolean test (T t)

● anyone can use these types
● or you may define your own
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Defining the computation

● a lambda expression has two parts, joined by the 
arrow:  ->

● the first part is the parameter list
● types may be omitted if Java can figure them out
● parentheses may be omitted if only one parameter
● or use () to indicate no parameters

● the second part is the expression, enclosed in {}
● the parameter values may be used in the expression
● the expression may also use local variables of the 

enclosing method – this is called a closure
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applying lambda expressions

● a lambda expression defined by interface I
● simply call the only method of I
● example:
● Function<String, Integer> f =

    s - > { return s.length(); } ;
● Integer x = f.apply(“hello world”) 
+ 2;
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Heaps

● a heap is a binary tree
● in which each node has a value less than its 

children (min heap)
● or a value greater than its children (max heap)

● this is the heap property
● unlike a binary search tree, nodes in a heap are 

not sorted overall
● instead, the heap property insures that the largest 

or smallest value is at the top of the heap
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heap example

● is this a min heap or a max heap?
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Heap Requirements

● as well as the heap property of each node 
needing to be less (greater) than its children,

in a heap, all leaves at maximum depth dmax are 
as far to the left as possible.

● any other leaves are at depth dmax - 1

● such a binary tree is called a complete binary 
tree 
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Heap Requirements

●  a heap is always a complete binary tree
● a complete binary tree is always balanced, so 

that a complete binary tree of n nodes has 
depth O(log n)

● in-class exercise: in what sense can I say that a 
complete binary tree is balanced? 
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Heap Storage

● any complete binary tree, including any heap, can 
be conveniently stored in an array:
● element 0 of the array stores the root
● elements 1 and 2 of the array store the nodes at depth 2
● elements 3, 4, 5, and 6 of the array store the nodes at 

depth 3
● nodes at depth d are stored in array elements                  

  2d-1-1...2d – 2
● conveniently, there is no need to store any pointers! 
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Array storage (without pointers) of
a Complete Binary Tree

● a node stored in array element i has:
● its parent in array element (i - 1) / 2
● its left child (if any) in array element 2i + 1
● its right child (if any) in array element 2i + 2

● since a heap is a complete binary tree, the right 
child can only be present if the left child is also 
present
● there may be one left child leaf node that does not 

have a right sibling
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in-class exercises

● store this heap into an array

● which of the following arrays store max heaps, min heaps, or neither?

index     0   1   2   3   4   5   6   7   8   9

array 1   0   1   2   0   4   5   6   7   8   9

array 2   9   8   7   6   5   4   3   2   1   0

array 3   5   5   5   6   6   6   6   7   7   1

array 4   9   3   9   2   1   6   7   1   2   1

array 5   8   7   6   1   2   3   4   2   1   2
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Heap Insertion

● the two heap requirements must be maintained when adding to a heap
● to maintain the complete binary tree property, the new node must be 

added to the right of all nodes at depth dmax

● or, if there already are 2(dmax) nodes at that level, the new node should be 
inserted all the way to the left, making the tree deeper by one level

● either way, the new value is inserted in the array just after all elements 
already in the array

● now the tree is complete, but may not have the heap property
● to check, compare the new node with the parent, and swap the two if 

needed to maintain the heap property
● continue with the parent's parent, all the way to the root if necessary
● now the complete binary tree also obeys the heap property
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Heap Deletion

● the largest node is at the root of the heap
● that node is removed, and replaced with the bottommost, 

rightmost node (the node at the end of the array)
● the remaining tree is complete, but may not have the heap 

property
● if the root node is less than either of its children, it is 

swapped with the largest of its children
● the operation continues with the new node
● now the complete binary tree also obeys the heap property
● similarly for min heaps 



 19

priority queues

● the queues studied so far were strictly FIFO
● that means objects were returned in the order inserted
● in the real world, often have priorities, e.g.:

● at airport check-in, there is a special line for first-class 
passengers

● if any first-class passengers are waiting, they are handled 
first

● if no first-class passengers are waiting, only then the other 
passengers can check-in 

● likewise some kinds of traffic in a network get priority
● e.g. identified real-time traffic on WiFi
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priority queue implementations

● linked list: objects are inserted in the proper place in the list (linear time), 
objects are returned from the front of the list (constant time)

nice because insertion of high priority items is fast 
● array: objects are inserted in the proper place in the array, with all other 

objects shifted to make room (linear time), objects are returned from the 
front of the array, with all other objects shifted down (linear time), or 
maintained as a circular array (constant time)

● binary search tree: objects are inserted into the binary search tree, using 
the priority as the key (log or linear), objects are removed from the leftmost 
or rightmost node of the tree (log or linear)

unless a balanced tree algorithm is used, the tree tends to become unbalanced, 
because nodes are always removed from the same side, so time becomes linear 

● heap: objects are inserted into the heap using the priority as the key (log 
time), and removed from the top of the heap (log time)

the simplest algorithm with guaranteed log time operations!
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priority queue performance

● if the priority queue only has a few elements, 
any of these implementations is fine

● however, if the priority queue might grow long, 
then frequent operations should be fast

● the performance depends on the algorithm, on 
the operation, and on the priority

● e.g., always adding something with highest 
priority is fast if using a linked list
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