
1

Computer Networks
ICS 651

● IP fragmentation
● Path MTU discovery
● Internet checksum
● Layering and Architecture
● Network Device Design
● Device Drivers
● Multicasting Algorithms and IP Multicasting

2

IP fragmentation

• If a packet of size s is to be sent on an interface with MTU m,

and if s > m

• the packet must either be dropped, or be turned into a collection of smaller
packets which carry the same information

• in IPv6 we drop the packet

• in IPv4, we drop the packet if the Don’t Fragment (DF) bit is set, and
otherwise we fragment it

• each of the smaller packets has its own IP header, which is based on the IP
header of the original (too large) IP packet:

• source and destination addresses, hop limit (TTL), and most other fields are
the same in the original and all the fragments

•the payload length is adjusted for each fragment

•and some fields are set so that the packet can be reassembled correctly

•each packet ID is the same as in the original datagram

3

IP fragmentation and reassembly
information

• the fragment must contain information about where the
payload belongs in the original (unfragmented) datagram

• this information is the fragment offset

• the fragment offset must be a multiple of 8, so the low-
order 3 bits (which are always 0) are not sent – only the
top 13 bits are sent

• the fragment should also tell us how big a datagram to
expect, so we know when the reassembly is complete

• when we get the last fragment, its More Fragments (MF)
bit is 0 – every other fragment has MF = 1

• unfragmented packets have fragment offset = 0, MF = 0

4

IP reassembly

• when receiving a fragment (MF ≠ 0 or fragment offset ≠ 0)

• check to see if the packet ID matches an existing reassembly
context

• if not, create a new reassembly context

• the context includes space for the reassembled packet

• this packet is initially empty

• if MF ≠ 0, we now know the final length

• copy the payload into the reassembled packet at the given
fragment offset

• keep track of which parts of the packet have been filled

• once the entire packet has been filled, and we know the final
length, do IP processing on the entire packet

5

IP reassembly – summary

• the fragment offset and MF are sufficient for reconstructing
the entire packet

• they must be set correctly when fragmenting

• a fragment can be fragmented again if necessary, as long
as the fragment offset and MF are set correctly

• the packet ID is an arbitrary number that helps the receiver
distinguish packets from the same sender

• no two packets with the same packet ID should ever be
in flight at the same time

6

IP Path MTU Discovery

● send IPv6 packets, or IPv4 packets with DF (Don’t Fragment) set
● cannot send more than local network MTU
● if a router must drop a packet that exceeds the MTU of the outgoing

interface, it can send a "destination unreachable/fragmentation needed"
ICMP message, or an ICMPv6 “packet too big” message

● this ICMP message carries the MTU
● if there is no ICMP message, sender can do a binary search (on common

MTU sizes) to find an MTU that works
● however, the path MTU can change!
● since ICMP message may be dropped, also needs other ways to detect

dropped packets
● slow, time-consuming, error-prone...

Internet Checksum

• IP header

• ICMP, TCP, and UDP header, data, and "pseudo-
header"

• pseudo-header are the IP level fields which, if
corrupted, cause mis-delivery: source and destination IP
addresses, protocol number, packet length

• if all bytes in packet add to n (without checksum), put -n
in checksum field, so all received bytes added together
give 0

• 16-bit, one's complement arithmetic checksum

16-bit 1's complement arithmetic

• add unsigned 16-bit quantities as always

• "carry-out" from 16-bit addition added back in to LSB

• "carry-out" can be accumulated in high-order part of 32-bit
word, and added at end

• negation is complement, zero is 0xffff or 0x0

• in numbers obtained by addition, zero is always 0xffff

• if you add 1 to 0xffff, you get 0 plus a carry out bit, which
when added to 0, gives 1 – this is the desired result

• example: 9ABC + 8888 = 2345

9

Layering

● a packet on the wire has a sequence of headers followed by the
payload, possibly followed by a sequence of trailers

● headers (and trailers) are properly nested: each layer will
encapsulate as its own payload the header, payload, and trailer of
the layer (transparent exception for fragmentation)

● if a layer can have more than one layer above it, the header must
contain one or more demultiplexing fields

● layers communicate by:
● sending frames/packets/buffers
● receiving frames/packets/buffers
● establishing and clearing connections

10

Standard Layers

● Layer 7: application layer. For example, HTTP, HTTPS (= SSL/TLS
+ HTTP), DNS, SMTP, NTP, etc

● Layer 6: presentation layer. For example, MIME
● Layer 5: session layer. For example, persistent logins and cookies
● Layer 4: transport layer. For example, TCP, UDP, and SCTP
● Layer 3: network layer. For example, IP
● Layer 2: data link layer. For example, Ethernet (802.3), WiFi

(802.11), Zigbee (802.15.4), Bluetooth (802.15.1)
● Layer 1: physical layer. For example, CAT-5 twisted pair, 2.4GHz

spread-spectrum radio, serial cable

11

Upcalls and Queues

● in sending, the data can be transferred from one layer to another as
parameter of a call

● in receiving, the data can be transferred from one layer to another as:
● parameter of an upcall
● return value of a downcall

● a receiving downcall requires synchronization to handle:
● the downcall being ready before the data (blocking, context switch)
● the data being ready before the downcall (queueing)

● an upcall may also require synchronization
● e.g. may have to acquire a lock before accessing a shared data

structure

12

Receive: Upcalls and Downcalls

● upcalls are simpler to implement and generally more efficient (less
synchronization for each packet)

● upcalls are harder to fit into an overall program (multiple threads of
control, requiring possibly pervasive synchronization)

● Linux (version 2.0) used 2 queues:

● the interrupt hander is an upcall. It does device handling (described
later), and puts the received packet in a device-specific queue

● the network code reads the queue, and when packets are received,
upcalls through the entire network stack, then puts the packet(s) in
a socket-specific queue

● the system call reads the queue, may block

13

Network Interface Device

● Networking Hardware, NIC

● UART/USART, Universal [Synchronous /] Asynchronous
Receiver Transmitter

● UART is a single-chip device that accepts or returns data
depending on the address on the computer's bus

● the hardware device has bits which control its operation (e.g. a
bit to decide whether to interrupt the host). These are grouped
into one or more control registers

● the hardware device has bits which record events (e.g. a bit to
record whether a character was received, but not given to the
host). These are grouped into one or more status registers

14

NIC for packet networks

● OS configures device at initialization time

● often by building a descriptor in memory, and writing the address of this descriptor to a
control register

● device can directly access (read and write) the computer's memory -- Direct Memory Access,
DMA

● when a packet is received, the device copies the contents to a buffer pre-allocated by the OS,
then interrupts

● interrupt handler processes the packet, checks device status, allocates new buffers to the
device

● to send, device driver writes to a control register the address of a linked list of buffers to send

● one buffer per packet, or sometimes
● multiple buffers for a single packet: one buffer for the headers, one buffer for user data

(scattered representation)
● device interrupts once the packets have been sent

15

Device Drivers

● The device-specific part of an Operating System is called a device driver

● device drivers are often loaded on demand as the OS discovers new
hardware

● e.g. Linux modules
● a device driver for a network device usually includes:

● initialization code
● an interrupt handler: this is the “bottom half” of the driver, called by the

hardware
– the system interrupt handler calls the device-specific interrupt handler

● code to send data to the network: this is the “top half” of the driver,
(ultimately) called by user programs

16

Multicasting: Ideas and Reality

● Audio and video conferencing: (usually) one sender at a time, potentially many
recipients

● Reality: the sender has a connection to/from each participant, sends a
customized data stream to each

● from a central server with high bandwidth
● the originator of the data sends to this server

● Idea: intermediate routers can duplicate data streams “for free” (just by adding
the same packet to multiple queues). Each sender would then be able to send
a single stream of data, and reach all the recipients

● decentralized, each participant needs the same bandwidth as every other
participant

● the automatic distribution of a single packet to multiple destinations is what
network people mean by multicasting

17

Multicasting on a broadcast-based
Local Area Network (LAN)

● multicasting requires that the hardware device of the intended recipients
process the packet

● all other systems on the network discard the packet, either in the device
hardware (most efficient) or in software (less efficient)

● modern LAN hardware is designed to accept packets for its own unchangeable
MAC address, for the broadcast address ff:ff:ff:ff:ff:ff, and also for
a finite number of addresses configured at runtime: this makes LAN multicast
very efficient as long as senders know which special MAC address to use

● IPv6 multicast packets sent to an IPv6 address ending in the four bytes
aabb:ccdd are sent to the MAC address 33:33:aa:bb:cc:dd

● RFC 2464
● so for example the routing packets in Project 1 sent to ff02::1, if they were

sent on a LAN, would be sent to the MAC address 33:33:00:00:00:01

18

Ideal Multicast across Routers

● Routers must know where to forward multicast packets

● leaf-initiated join: request packet from the host takes the reverse route towards the sender

– when the request packet reaches a router that is already carrying the multicast stream,
the router starts forwarding the stream over the interface on which it received the request

– sound familiar?
● sender-managed multicast: sender must configure routers to forward multicast packets to all

the correct destinations
● a rendez-vous point (RP) is a central server that can act as the “sender” here

● Either way, only works if there are routers supporting multicast

● easier to set up within an autonomous system
● Protocols that support IP multicast include:

● Protocol-Independent Multicast (PIM), which has several variants, and
● Multicast Source Discovery Protocol (MDSP), which can be used across domains

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

