

Computer Networks
ICS 651

● A simple packet network
● DNS
● homework 2
● Internet Protocol

2

Bytes to packets: SLIP protocol

● two special characters: END and ESC (escape)

● END marks the end of a packet and the start of the next

● data may contain the special characters:

● if the data byte is END, we send ESC ENDC

● if the data byte is ESC, we send ESC ESCC

● where ENDC and ESCC are otherwise normal characters

● predefined maximum user data size, 1006 bytes

● RFC 1055, http://www.ietf.org/rfc/rfc1055.txt

● END is 0xC0, ESC is 0xDB, ENDC is 0xDC, and ESCC is 0xDD

● This protocol is tolerant of slow communications

● This protocol recovers gracefully from lost bytes

http://www.ietf.org/rfc/rfc1055.txt

3

Ways to Convert a Stream of Bytes
or Bits to a Stream of Packets

● SLIP inserts additional bytes where needed to preserve the meaning of
the special bytes used by the protocol

● this is called byte stuffing

● Could also send the length before each packet

● what drawbacks would that have?

● Some protocols use a sequence of n 0-bits, or n 1-bits (e.g. n == 5) to
mark a frame boundary

● For such protocols, every sequence of n such bits in the data stream
must be followed by the opposite bit

● this is called bit stuffing

● the receiver removes the extra bits

● Such protocols make sense when the underlying physical medium
cannot carry too many bits with all the same values

● e.g., if 0-1 and 1-0 transmissions help with synchronization

4

SLIP Implementation

● send system call sends an END character, then repeatedly:

● either sends the character, or

● sends the two characters ESC and ESCxxx

● finally, it sends the final END character

● all this is done while holding a lock, so only one thread can send at a
time

●data handler has a buffer with 1006 bytes:

● ignore initial END bytes, if any

● put received bytes into buffer, removing ESC sequences

● continue until an unescaped END or we run out of space

● if we found END, deliver the packet, otherwise discard it

● keep state: how many bytes in the buffer, was the last character an
ESC, is the buffer in use by a higher layer

5

SLIP send

● only returns once the packet has been sent

 /* this is a macro so the return statement returns from
write_slip_data */

 #define WRITE_BYTE(fd, c) \

 if (write_tty_data (fd, c) != 1) { \

 pthread_mutex_unlock (&(send_mutex [fd])); \

 printf ("slip: error writing tty data\n"); \

 return -1; \

 }

6

SLIP send, part I

int write_slip_data (int fd, char * data, int numbytes) {

 int byte;

 if ((numbytes <= 0) || (numbytes > MAX_SLIP_SEND)) {

 printf ("slip: bad size %d\n", numbytes);

 return -1;

 }

 #ifdef DEBUG

 printf ("acquiring send lock for tty %d\n", fd);

 #endif /* DEBUG */

 pthread_mutex_lock (&(send_mutex [fd]));

 #ifdef DEBUG

 print_packet ("sending packet", data, numbytes);

 #endif /* DEBUG */

 /* send the start byte, which of course is called END :-) */

 WRITE_BYTE (fd, END);

7

SLIP send, part II

 for (byte = 0; byte < numbytes; byte++) {

 unsigned char c = (data [byte]) & 0xff;

 if (c == END) {

 WRITE_BYTE (fd, ESC);

 WRITE_BYTE (fd, ESC_END);

 } else if (c == ESC) {

 WRITE_BYTE (fd, ESC);

 WRITE_BYTE (fd, ESC_ESC);

 } else { /* normal byte */

 WRITE_BYTE (fd, c);

 }

 }

 WRITE_BYTE (fd, END); /* the end of the frame */

 pthread_mutex_unlock (&(send_mutex [fd]));

 return numbytes;

}

8

SLIP receive and upcalls

● the receive function is called by the lower layer whenever a
new character is received from the device (an upcall)
● in turn, once we have a packet, we do the next upcall
● some global variables:
static char receive_buffer [MAX_TTYS]

 [((MAX_SLIP_SIZE + 7) / 8) * 8];

static int receive_position [MAX_TTYS];

static int escaped [MAX_TTYS];

static int error_frame [MAX_TTYS];

/* the data handlers are also global. */

typedef void (* my_data_handler) (int, char *, int);

static my_data_handler slip_data_handler [MAX_TTYS];

9

SLIP receive
(without error handling)

static void data_handler_for_tty (int tty, unsigned char c)
{
 pthread_mutex_lock (&(receive_mutex [tty]));
 if (escaped [tty]) { /* last character was an escape */
 escaped [tty] = 0;
 if (c == ESC_END)
 put_char_in_buffer (tty, END);
 else /* c should be ESC_ESC */
 put_char_in_buffer (tty, ESC);
 } else { /* last character was not ESC */
 if (c == END) { /* done, give packet to data handler. */
 if (receive_position [tty] > 0) /* packet is not empty */
 slip_data_handler [tty] (tty, receive_buffer [tty],
 receive_position [tty]);
 /* get ready to start receiving a new packet */
 receive_position [tty] = 0;
 } else if (c == ESC) { /* escape for the next character */
 escaped [tty] = 1;
 } else { /* 'normal' character */
 put_char_in_buffer (tty, c);
 }
 }
 /* make the buffer available to other threads. */
 pthread_mutex_unlock (&(receive_mutex [tty]));
}

10

SLIP receive error handling

● what should we do if we run out of space in the buffer?
● … if an ESC character is followed by something other than
ESC_ESC or ESC_END?
● if there is no data handler?
● if the current frame has an error, yet this character is not
END?

See
http://www2.hawaii.edu/~esb/2016spring.ics651/jan19.html ,

“SLIP receive”

http://www2.hawaii.edu/~esb/2016spring.ics651/jan19.html

11

A Simple Network

● a network that can transfer packets between exactly two computers
connected by a serial line, with implicit addressing

● maximum packet size is 1006 bytes

● packets could be lost or corrupted if there are any errors (serial lines
are noisy) -- and we do not detect this

● packets are never reordered or duplicated by the network. Could they
be reordered by the multithreading?

● If there are many threads sending, the maximum delay could be very
large, but if there are only two threads (one send, one receive), the
maximum delay is bounded

● software is multithreaded, requires synchronization for the use of
shared resources

● SLIP provides a data handler to read bytes: whoever uses SLIP must in
turn provide another data handler (a SLIP packet handler)

12

What we haven’t built (yet)

● more than two computers

● network addresses

● addresses humans can remember

● reliable transmission

● wide-area transmission

● transmission of arbitrary amounts of data

13

Naming and Addressing

● the first step in expanding this network is to allow for more
than two computers

● this means each data packet needs a destination address,
since the SLIP "header" does not include such information

● an address identifies a destination

● only one destination should have a given address

● one destination can have one or more addresses

● addresses are usually fixed-size binary numbers and are
used by computers -- people prefer meaningful strings, that
is, names

● if we use names, we will need a mechanism for converting
names to addresses: name resolution

14

Addresses in an Internet

● since computers can only communicate in a point-to-point
fashion (so far, in our serial-line network), many computers
will have multiple interfaces, so they can forward data from
one to the other

● The Internet Protocol (IP) adds a header to each packet,
listing the destination IP address

● the Internet Protocol also specifies how packets are
forwarded by computers with multiple interfaces

● in the Internet Protocol, addresses are assigned to network
interfaces, not to computers: a computer may have multiple
interfaces, each with one (or possibly more) addresses

15

Addresses in an Internet II

● a large internet is made up of smaller networks, and so benefits
from hierarchical addresses

● with a hierarchical address, a packet is first routed to a computer
somewhere on the destination network, then to a computer on the
destination sub-network, and finally to the destination

● it follows that hierarchical addresses must be assigned depending
on the network to which the hardware is connected -- the hardware
cannot be preconfigured with the address

● although hierarchies might have multiple levels, the original IPv4
only had two levels: network and host

● fixed-size addresses are processed more efficiently: 32 bits
(IPv4), 128 bits (IPv6)

16

Names in an Internet

● names are useful if they can be translated into addresses

● if arbitrary translations are desired, we use a database (a table)

● a hierarchy is useful for:

● delegating assignment of names, e.g. to national registration
authorities, registrars, registrants, and whoever they delegate to

● allowing the expression of natural hierarchies, e.g.
governments, companies, and all their subsidiary organizations

● the Domain Name System provides such names, with a
distributed database

● the process of converting Domain Names to IP addresses is
Domain Name Resolution, implemented by gethostbyname or
getaddrinfo in Unix systems

17

Domain Names

● name hierarchy: rightmost "label" is the one nearest the root
(the root is simply "."). Example, ".edu." (full name)

● each label is 1-63 characters:

● starting with a letter

● containing letters, digits, or hyphens

● ending with a letter or a digit

● uppercase and lowercase are treated as if they were the
same that is, WWW.HAWAII.EDU is the same name as
www.hawaii.edu

● each IP address may have any number (0, 1, or more) of
names associated with it

18

Domain Name Zone

● a collection of names that are

● contiguous in the tree, and

● administered as one unit,

● is one zone

● a zone can be split into two by assigning a subtree to
another administration

● a zone should have at least two name servers responsible
for providing name-to-address resolution

19

Domain Name Database

● Domain Name resolution is implemented as a lookup in a distributed
database

● lookup is the only distributed operation, so the database is read-only

● each zone has at least one authoritative and one secondary server

● the servers for each zone must be configured with the IP addresses of

● the servers for the zones above them in the tree, and

● the servers for the zones below them in the tree (if any)

● a query directed to any server can be referred to a different server,
"closer" in the tree to the destination

● a host need only be configured with the IP of a single DNS server,
though multiple such addresses are common

20

Domain Name Protocol

● TCP or UDP (in case of TCP, a two-byte length field is added -- why?)

● a Query requests one resource record

● a Response returns one resource record, if available

● some resource record types:

● [A] name to (IPv4) Address translation

● [AAAA] name to IPv6 address translation

● [CNAME] Canonical NAME for a given DNS name

● [MX] host willing to do eMail eXchange for the given domain name

● [NS] name server authoritative for the domain

● resource records carry a TTL (time-to-live) field, in seconds, e.g. 3600

21

Domain Name Example

-> dig mx hawaii.edu

; <<>> DiG 9.5.1-P2 <<>> mx hawaii.edu
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 35571
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3,
ADDITIONAL: 4

;; QUESTION SECTION:
;hawaii.edu. IN MX

;; ANSWER SECTION:
hawaii.edu. 1800 IN MX 10
mx1.hawaii.edu.

;; AUTHORITY SECTION:
hawaii.edu. 1800 IN NS dns2.hawaii.edu.
hawaii.edu. 1800 IN NS dns4.hawaii.edu.
hawaii.edu. 1800 IN NS dns1.hawaii.edu.

22

Domain Name Example II

;; ADDITIONAL SECTION:

mx1.hawaii.edu. 1800 IN A 128.171.224.25

dns1.hawaii.edu. 1800 IN A 128.171.3.13

dns2.hawaii.edu. 1800 IN A 128.171.1.1

dns4.hawaii.edu. 1800 IN A 130.253.102.4

;; Query time: 2 msec

;; SERVER: 128.171.3.13#53(128.171.3.13)

;; WHEN: Mon Aug 31 10:10:00 2009

;; MSG SIZE rcvd: 169

23

Typical Domain Name Query

● a host sends a request for an A or AAAA resource record to
its name server

● the name server may have the resource record. If not, it
may query another server, or return the address of another
server (in an NS record)

● if no response, query may be resent (server is stateless)

● the search continues until an A/AAAA record is found, or a
negative response is received (or until a timeout)

● servers and hosts can cache the resource records up to TTL
seconds

● all this for gethostbyname or getaddrinfo (system
calls), or nslookup, or dig, or host (commands)

24

What does DNS need from its lower
layers?

● a network with multiple hosts

● any-to-any communication of packets

● reliability is not required: DNS retransmits the query if it
does not get a response (since the database is read-only,
queries are idempotent)

● routing based only on IP addresses

● initial configuration:

● a machine needs to be configured with the address of a
DNS server

● an authoritative DNS server needs the IP addresses of
DNS servers of neighboring zones

Homework 2

● send UDP packets (not TCP) from a client to the server

● the server replies with almost the same packet (first byte
must be changed from 1 to 2)

● client must time out if there is no reply after 5s

● implementation strategies for timeout: threads, select,
alarm, non-blocking receive

● also make it work over the simulated network (simnet and
slipnet)

● a simconfig file for each simulated host, each in its own
directory

● additional challenges for your enjoyment...

Internet Protocol

● IP is responsible for delivering packets end-to-end in the
Internet

● reliability, correctness, and in-order delivery are not required

● IP does this by adding a header to each packet, which
contains

● source and destination address

● protocol number

● hop limit

● many other fields

● every IP host that forwards a packet must send it closer to
its destination

● a routing table should list routes to all possible destinations

IPv6 header

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |version| traffic class | flow identifier |
 +-+
 | payload length | Next Header | hop limit |
 +-+
 | |
 + +
 | source address |
 + +
 | |
 + +
 +-+
 | |
 + +
 | destination address |
 + +
 | |
 + +
 | |
 +-+
 | next header: TCP (6), UDP (17), ICMPv6 (58) or |
 | optional IPv6 header

IPv4 header

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Version| HLen |Type of Service| Total Length |
 +-+
 | Identification |Flags| Fragment Offset |
 +-+
 | Time to Live | Protocol | Header Checksum |
 +-+
 | Source Address |
 +-+
 | Destination Address |
 +-+
 | Options | Padding |
 +-+

IP header fields

● all fields are big-endian

● version number must be first field (so IP can evolve)

● Source Address is useful for responding

● Type of Service is defined but not widely used

● Total Length is needed for protocols that may pad the
packet (e.g. ethernet) and to check for errors

● header length used for IP options, e.g. timestamp

● TTL/Time To Live/Hop Limit (really a "maximum hop
count") kills packet in case of routing errors

● protocols: 1 (ICMP), 6 (TCP), 17 (UDP)

more IPv4 header fields

● header checksum (RFC 1071,
http://www.ietf.org/rfc/rfc1071.txt) only protects header

● packet ID and fragmentation fields (discussed next lecture)
allow us to send packets larger than the underlying
network's MTU (Maximum Transmission Unit)

● minimum MTU for carrying IPv4 is 576 bytes, for IPv6 is
1280 bytes

● IP header options (IPv6 extension headers) allow
additional, optional functionality

e.g. source routing

IPv6 compared to IPv4

● huge addresses

● hop limit instead of TTL

● no fragmentation in the basic header -- fragmentation is in
an optional header, and can only be done by the sender

● no header checksum

● fixed-size header with optional extension headers

Some Properties of IP

● connectionless: routing is based only on the destination
address

● TTL field keeps small routing mistakes from bringing down
the network

● unreliable: no packet sequence numbers,
acknowledgements, nor error checking on the data

● source address is never used in "normal" IP processing
● may be used for egress filtering

● is used for responding to a message

What IP adds to the simple network

● end-to-end delivery
● using the hop-by-hop delivery to reach the next hop

● addresses

● routing

● IP does NOT add:
● port numbers

● reliable transmission

● congestion control

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

