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● Internet Protocol
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Bytes to packets: SLIP protocol

● two special characters: END and ESC (escape)

● END marks the end of a packet and the start of the next

● data may contain the special characters:

● if the data byte is END, we send ESC ENDC

● if the data byte is ESC, we send ESC ESCC 

● where ENDC and ESCC are otherwise normal characters

● predefined maximum user data size, 1006 bytes

● RFC 1055, http://www.ietf.org/rfc/rfc1055.txt

● END is 0xC0, ESC is 0xDB, ENDC is 0xDC, and ESCC is 0xDD

● This protocol is tolerant of slow communications

● This protocol recovers gracefully from lost bytes

http://www.ietf.org/rfc/rfc1055.txt
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Ways to Convert a Stream of Bytes 
or Bits to a Stream of Packets

● SLIP inserts additional bytes where needed to preserve the meaning of 
the special bytes used by the protocol

●  this is called byte stuffing

● Could also send the length before each packet

●  what drawbacks would that have?

● Some protocols use a sequence of n 0-bits, or n 1-bits (e.g. n == 5) to 
mark a frame boundary

● For such protocols, every sequence of n such bits in the data stream 
must be followed by the opposite bit

● this is called bit stuffing

● the receiver removes the extra bits

● Such protocols make sense when the underlying physical medium 
cannot carry too many bits with all the same values

● e.g., if 0-1 and 1-0 transmissions help with synchronization
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SLIP Implementation

● send system call sends an END character, then repeatedly:

● either sends the character, or

● sends the two characters ESC and ESCxxx

● finally, it sends the final END character

● all this is done while holding a lock, so only one thread can send at a 
time

●data handler has a buffer with 1006 bytes:

● ignore initial END bytes, if any

● put received bytes into buffer, removing ESC sequences

● continue until an unescaped END or we run out of space

● if we found END, deliver the packet, otherwise discard it

● keep state: how many bytes in the buffer, was the last character an 
ESC, is the buffer in use by a higher layer
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SLIP send

● only returns once the packet has been sent

    /* this is a macro so the return statement returns from 
write_slip_data */

    #define WRITE_BYTE(fd, c)                               \

        if (write_tty_data (fd, c) != 1) {                  \

          pthread_mutex_unlock (&(send_mutex [fd]));        \

          printf ("slip: error writing tty data\n");        \

          return -1;                                        \

        }



6

SLIP send, part I

int write_slip_data (int fd, char * data, int numbytes) {

   int byte;

   if ((numbytes <= 0) || (numbytes > MAX_SLIP_SEND)) {

     printf ("slip: bad size %d\n", numbytes);

     return -1;

   }

 #ifdef DEBUG

   printf ("acquiring send lock for tty %d\n", fd);

 #endif /* DEBUG */

   pthread_mutex_lock (&(send_mutex [fd]));

 #ifdef DEBUG

   print_packet ("sending packet", data, numbytes);

 #endif /* DEBUG */

   /* send the start byte, which of course is called END :-) */

   WRITE_BYTE (fd, END);
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SLIP send, part II

   for (byte = 0; byte < numbytes; byte++) {

    unsigned char c = (data [byte]) & 0xff;

    if (c == END) {

      WRITE_BYTE (fd, ESC);

      WRITE_BYTE (fd, ESC_END);

    } else if (c == ESC) {

      WRITE_BYTE (fd, ESC);

      WRITE_BYTE (fd, ESC_ESC);

    } else {                        /* normal byte */

      WRITE_BYTE (fd, c);

    }

  }

  WRITE_BYTE (fd, END);             /* the end of the frame */

  pthread_mutex_unlock (&(send_mutex [fd]));

  return numbytes;

}
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SLIP receive and upcalls

● the receive function is called by the lower layer whenever a 
new character is received from the device (an upcall)
● in turn, once we have a packet, we do the next upcall
● some global variables:
static char receive_buffer [MAX_TTYS]

                    [((MAX_SLIP_SIZE + 7) / 8) * 8];

static int receive_position [MAX_TTYS];

static int escaped [MAX_TTYS];

static int error_frame [MAX_TTYS];

/* the data handlers are also global. */

typedef void (* my_data_handler) (int, char *, int);

static my_data_handler slip_data_handler [MAX_TTYS];
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SLIP receive
(without error handling)

static void data_handler_for_tty (int tty, unsigned char c)
{
  pthread_mutex_lock (&(receive_mutex [tty]));
  if (escaped [tty]) {    /* last character was an escape */
    escaped [tty] = 0;
    if (c == ESC_END)
      put_char_in_buffer (tty, END);
    else /* c should be ESC_ESC */
      put_char_in_buffer (tty, ESC);
  } else {            /* last character was not ESC */
    if (c == END) {   /* done, give packet to data handler. */
      if (receive_position [tty] > 0)   /* packet is not empty */
        slip_data_handler [tty] (tty, receive_buffer [tty],
                                 receive_position [tty]);
      /* get ready to start receiving a new packet */
      receive_position [tty] = 0;
    } else if (c == ESC) { /* escape for the next character */
      escaped [tty] = 1;
    } else {               /* 'normal' character */
      put_char_in_buffer (tty, c);
    }
  }
  /* make the buffer available to other threads. */
  pthread_mutex_unlock (&(receive_mutex [tty]));
}
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SLIP receive error handling

● what should we do if we run out of space in the buffer?
● … if an ESC character is followed by something other than 
ESC_ESC or ESC_END?
● if there is no data handler?
● if the current frame has an error, yet this character is not 
END?

See 
http://www2.hawaii.edu/~esb/2016spring.ics651/jan19.html , 

“SLIP receive”

http://www2.hawaii.edu/~esb/2016spring.ics651/jan19.html
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A Simple Network

● a network that can transfer packets between exactly two computers 
connected by a serial line, with implicit addressing

● maximum packet size is 1006 bytes

● packets could be lost or corrupted if there are any errors (serial lines 
are noisy) -- and we do not detect this

● packets are never reordered or duplicated by the network. Could they 
be reordered by the multithreading?

● If there are many threads sending, the maximum delay could be very 
large, but if there are only two threads (one send, one receive), the 
maximum delay is bounded

● software is multithreaded, requires synchronization for the use of 
shared resources

● SLIP provides a data handler to read bytes: whoever uses SLIP must in 
turn provide another data handler (a SLIP packet handler) 



12

What we haven’t built (yet)

● more than two computers

● network addresses

● addresses humans can remember

● reliable transmission

● wide-area transmission

● transmission of arbitrary amounts of data
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Naming and Addressing

● the first step in expanding this network is to allow for more 
than two computers

● this means each data packet needs a destination address, 
since the SLIP "header" does not include such information

● an address identifies a destination

● only one destination should have a given address

● one destination can have one or more addresses

● addresses are usually fixed-size binary numbers and are 
used by computers -- people prefer meaningful strings, that 
is, names

● if we use names, we will need a mechanism for converting 
names to addresses: name resolution 
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Addresses in an Internet

● since computers can only communicate in a point-to-point 
fashion (so far, in our serial-line network), many computers 
will have multiple interfaces, so they can forward data from 
one to the other

● The Internet Protocol (IP) adds a header to each packet, 
listing the destination IP address

● the Internet Protocol also specifies how packets are 
forwarded by computers with multiple interfaces

● in the Internet Protocol, addresses are assigned to network 
interfaces, not to computers: a computer may have multiple 
interfaces, each with one (or possibly more) addresses



15

Addresses in an Internet II

● a large internet is made up of smaller networks, and so benefits 
from hierarchical addresses

● with a hierarchical address, a packet is first routed to a computer 
somewhere on the destination network, then to a computer on the 
destination sub-network, and finally to the destination

● it follows that hierarchical addresses must be assigned depending 
on the network to which the hardware is connected -- the hardware 
cannot be preconfigured with the address

● although hierarchies might have multiple levels, the original IPv4 
only had two levels: network and host

● fixed-size addresses are processed more efficiently: 32 bits 
(IPv4), 128 bits (IPv6)
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Names in an Internet

● names are useful if they can be translated into addresses

● if arbitrary translations are desired, we use a database (a table)

● a hierarchy is useful for:

● delegating assignment of names, e.g. to national registration 
authorities, registrars, registrants, and whoever they delegate to

● allowing the expression of natural hierarchies, e.g. 
governments, companies, and all their subsidiary organizations 

● the Domain Name System provides such names, with a 
distributed database

● the process of converting Domain Names to IP addresses is 
Domain Name Resolution, implemented by gethostbyname or 
getaddrinfo in Unix systems
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Domain Names

● name hierarchy: rightmost "label" is the one nearest the root 
(the root is simply "."). Example, ".edu." (full name)

● each label is 1-63 characters:

● starting with a letter

● containing letters, digits, or hyphens

● ending with a letter or a digit 

● uppercase and lowercase are treated as if they were the 
same that is, WWW.HAWAII.EDU is the same name as 
www.hawaii.edu

● each IP address may have any number (0, 1, or more) of 
names associated with it 
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Domain Name Zone

● a collection of names that are

● contiguous in the tree, and

● administered as one unit, 

● is one zone

● a zone can be split into two by assigning a subtree to 
another administration

● a zone should have at least two name servers responsible 
for providing name-to-address resolution
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Domain Name Database

● Domain Name resolution is implemented as a lookup in a distributed 
database

● lookup is the only distributed operation, so the database is read-only

● each zone has at least one authoritative and one secondary server

● the servers for each zone must be configured with the IP addresses of

● the servers for the zones above them in the tree, and

● the servers for the zones below them in the tree (if any) 

● a query directed to any server can be referred to a different server, 
"closer" in the tree to the destination

● a host need only be configured with the IP of a single DNS server, 
though multiple such addresses are common
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Domain Name Protocol

● TCP or UDP (in case of TCP, a two-byte length field is added -- why?)

● a Query requests one resource record

● a Response returns one resource record, if available

● some resource record types:

● [A] name to (IPv4) Address translation

● [AAAA] name to IPv6 address translation

● [CNAME] Canonical NAME for a given DNS name

● [MX] host willing to do eMail eXchange for the given domain name

● [NS] name server authoritative for the domain 

● resource records carry a TTL (time-to-live) field, in seconds, e.g. 3600
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Domain Name Example

-> dig mx hawaii.edu

; <<>> DiG 9.5.1-P2 <<>> mx hawaii.edu
;; global options:  printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 35571
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, 
ADDITIONAL: 4

;; QUESTION SECTION:
;hawaii.edu.                    IN      MX

;; ANSWER SECTION:
hawaii.edu.             1800    IN      MX      10 
mx1.hawaii.edu.

;; AUTHORITY SECTION:
hawaii.edu.             1800    IN      NS      dns2.hawaii.edu.
hawaii.edu.             1800    IN      NS      dns4.hawaii.edu.
hawaii.edu.             1800    IN      NS      dns1.hawaii.edu.
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Domain Name Example II

;; ADDITIONAL SECTION:

mx1.hawaii.edu.         1800    IN      A       128.171.224.25

dns1.hawaii.edu.        1800    IN      A       128.171.3.13

dns2.hawaii.edu.        1800    IN      A       128.171.1.1

dns4.hawaii.edu.        1800    IN      A       130.253.102.4

;; Query time: 2 msec

;; SERVER: 128.171.3.13#53(128.171.3.13)

;; WHEN: Mon Aug 31 10:10:00 2009

;; MSG SIZE  rcvd: 169
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Typical Domain Name Query

● a host sends a request for an A or AAAA resource record to 
its name server

● the name server may have the resource record. If not, it 
may query another server, or return the address of another 
server (in an NS record)

● if no response, query may be resent (server is stateless)

● the search continues until an A/AAAA record is found, or a 
negative response is received (or until a timeout)

● servers and hosts can cache the resource records up to TTL 
seconds

● all this for gethostbyname or getaddrinfo (system 
calls), or nslookup, or dig, or host (commands) 
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What does DNS need from its lower 
layers?

● a network with multiple hosts

● any-to-any communication of packets

● reliability is not required: DNS retransmits the query if it 
does not get a response (since the database is read-only, 
queries are idempotent)

● routing based only on IP addresses

● initial configuration:

● a machine needs to be configured with the address of a 
DNS server

● an authoritative DNS server needs the IP addresses of 
DNS servers of neighboring zones



  

Homework 2

● send UDP packets (not TCP) from a client to the server

● the server replies with almost the same packet (first byte 
must be changed from 1 to 2)

● client must time out if there is no reply after 5s

●  implementation strategies for timeout: threads, select, 
alarm, non-blocking receive

● also make it work over the simulated network (simnet and 
slipnet)

●  a simconfig file for each simulated host, each in its own 
directory

● additional challenges for your enjoyment...



  

Internet Protocol

● IP is responsible for delivering packets end-to-end in the 
Internet

● reliability, correctness, and in-order delivery are not required

● IP does this by adding a header to each packet, which 
contains

●  source and destination address

●  protocol number

● hop limit

●  many other fields

● every IP host that forwards a packet must send it closer to 
its destination

●  a routing table should list routes to all possible destinations



  

IPv6 header

    0                   1                   2                   3   
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |version| traffic class |  flow identifier                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         payload length        |  Next Header  |  hop limit    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   +                                                               +
   |                       source address                          |
   +                                                               +
   |                                                               |
   +                                                               +
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   +                                                               +
   |                    destination address                        |
   +                                                               +
   |                                                               |
   +                                                               +
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  next header: TCP (6), UDP (17), ICMPv6 (58) or               |
   |  optional IPv6 header



  

IPv4 header

    
    0                   1                   2                   3   
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Version| HLen  |Type of Service|          Total Length         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         Identification        |Flags|      Fragment Offset    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Time to Live |    Protocol   |         Header Checksum       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       Source Address                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                    Destination Address                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                    Options                    |    Padding    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



  

IP header fields

● all fields are big-endian

● version number must be first field (so IP can evolve)

● Source Address is useful for responding

● Type of Service is defined but not widely used

● Total Length is needed for protocols that may pad the 
packet (e.g. ethernet) and to check for errors

● header length used for IP options, e.g. timestamp

● TTL/Time To Live/Hop Limit (really a "maximum hop 
count") kills packet in case of routing errors

● protocols: 1 (ICMP), 6 (TCP), 17 (UDP)



  

more IPv4 header fields

● header checksum (RFC 1071, 
http://www.ietf.org/rfc/rfc1071.txt) only protects header

● packet ID and fragmentation fields (discussed next lecture) 
allow us to send packets larger than the underlying 
network's MTU (Maximum Transmission Unit)

● minimum MTU for carrying IPv4 is 576 bytes, for IPv6 is 
1280 bytes

● IP header options (IPv6 extension headers) allow 
additional, optional functionality

e.g. source routing



  

IPv6 compared to IPv4

● huge addresses

● hop limit instead of TTL

● no fragmentation in the basic header -- fragmentation is in 
an optional header, and can only be done by the sender

● no header checksum

● fixed-size header with optional extension headers



  

Some Properties of IP

● connectionless: routing is based only on the destination 
address

● TTL field keeps small routing mistakes from bringing down 
the network

● unreliable: no packet sequence numbers, 
acknowledgements, nor error checking on the data

● source address is never used in "normal" IP processing
● may be used for egress filtering

● is used for responding to a message



  

What IP adds to the simple network

● end-to-end delivery
● using the hop-by-hop delivery to reach the next hop

● addresses

● routing

● IP does NOT add:
● port numbers

● reliable transmission

● congestion control
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