
1

Computer Networks
ICS 651

● congestion collapse
● congestion control: TCP Reno
● congestion control: TCP Vegas
● congestion control: TCP cubic
● other ways of detecting congestion
● addressing congestion
● router intervention
● Internet Explicit Congestion Notification
● FIFO queueing
● fair queueing

2

TCP summary so far

● reliable transmission:
● sequence and acknowledgement numbers

– counting bytes (not packets)
● retransmission if no ack is received by timeout
● checksum for correctness
● flow control window to regulate sending speed

● ports and demultiplexing
● optimizations: Nagle algorithm and delayed acks
● TCP options
● push and urgent
● next topic: congestion control window

3

Router Congestion

● assume a fast router
● two gigabit-ethernet links receiving lots of outgoing data
● one (relatively) slow internet link (10 Mb/s uplink speed)

sending the outgoing data
● if the two links send more than a combined 10 Mb/s over

an extended period, the router buffers will fill up
● eventually the router will have to discard data due to

congestion: more data being sent than the line can carry

4

Congestion Collapse

● assume a fixed timeout
● if I have n bytes/second to send, I send them
● if they get dropped, I retransmit them (total 2n bytes/second, 3n

bytes/second, ...)
● when there is congestion, packets get dropped
● if everybody retransmits with fixed timeout, the amount of data sent

grows, increasing congestion
● so some congestion (enough to drop packets) causes more congestion!!!!

● eventually, very little data gets through, most is discarded
● the network is (nearly) down

5

TCP Reno

● exponential backoff: if retransmit timer was t before retransmission, it becomes 2t
after retransmission

● careful RTT measurements give retransmission as soon as possible, but no sooner
● keep a congestion window:

● effective window is lesser of: (1) flow control window, and (2) congestion window
● congestion window is kept only on the sender, and never communicated between the peers
● congestion window (cwin) starts at 1 MSS, grows by 1 MSS for every MSS acked: this is the

exponential growth phase of the congestion window, called slow start
● on a retransmission, thresh = cwin / 2, and cwin = 1
● then, use slow start while cwin < thresh
● then (after cwin >= thresh) for each ack, add to the window the value MSS *

newly-acked/window: this adds one MSS to the window for each whole window that is acked
(typically, once every RTT) resulting in linear growth

● fast retransmit is similar -- interesting details at RFC 2001.

6

RTT Estimate

● RFC 1122, section 4.2.3.1
● RTT estimate must be accurate, or TCP will incorrectly assume

that the network is congested
● Karn/Partridge algorithm: don't use retransmitted segments for

RTT estimation.
● for accurate RTT estimate, keep a running average of RTTs:

RTTaveragex = (1 - alpha) RTTaveragex-1 * alpha RTTx

● For example, alpha = 0.125 (1/8).

● Could set the timeout to RTTx * 2.

● but also keep track of the variance in RTT

7

Jacobson/Karels algorithm

● receive an ack with round-trip-time RTTx

● New estimate: RTTaveragex = (1 - alpha) RTTaveragex-1 +
alpha RTTx

● Deviation average:

● DevAvex = (1-beta) DevAvex - 1 + beta |RTTx-RTTAveragex - 1|

● Timeout: Timeoutx = u RTTaveragex + phi DevAvex

0 < delta < 1 (typically, delta = 1/8 for RTTaverage, and 1/4 for Dev)

u = 1

phi = 4

8

TCP Vegas

● Reno detects congestion after it happens
● Reno also causes congestion by increasing the window until congestion

occurs
● early congestion detection: as queues get filled in the router, packets take

longer, so the RTT increases
● when RTT gets bigger, we can slow our sending
● when RTT gets back to minimum, we can increase our sending
● TCP Vegas had all the features of TCP Reno, plus congestion avoidance

when the RTT increased above the minimum
● not standard, but tested to work well

● works particularly well on networks that would otherwise see large queueing
delays

9

TCP cubic
● window size grows with the cube of the time since the last congestion

● prior congestion control algorithms define window growth in terms of round-trip times
● growth based on real time is more fair to congestions with longer RTTs

● Wcubic = C(t – K)3 + Wmax

● Wmax is the window size at which congestion is detected

● K = cuberoot(BWmax / C)

● BWmax is the new, small window after congestion is detected

● window increase from BWmax is initially fast, slows down around Wmax, and as long as
no congestion is detected, increases again more and more quickly

● fairness: flows with initially larger Wmax have a larger K, so increase more
slowly

● cubic is now the default for Linux, MacOS, Windows

10

Detecting and Addressing
Congestion

● detecting congestion:
● queues get longer
● RTT gets bigger
● data / RTT (power) starts to drop as you try to send more

● addressing congestion:
● additive increase/multiplicative decrease (needed for stability if

congestion is occurring)
● additive increase/additive decrease (TCP Vegas) -- works as long as

congestion can be avoided
● setting flow rate
● bandwidth reservation

11

Router Intervention to Avoid or
React to Congestion

● Random Early Discard (RED) -- causes TCP Reno to back off
● information feed-forward -- the receiver must then return congestion

information to the sender (see Internet ECN, below)
● information feedback -- requires route back to sender, does not work

in Internet (except source quench ICMP, which is deprecated)
● communication time from router to sender may be insufficient if

sender is sending lots of stuff. Also, stability issues -- all senders
could increase their sending rate at the same time

● credits: can only send as much as we have in the "bank",
automatically (but not immediately) replenished
● similar to a window

12

Internet Explicit Congestion
Notification

● ECN, explicit congestion notification, RFC 3168.
● in ECN, two of the bits of the Type of Service (ToS) field

are used to indicate (a) whether congestion notification
is requested (ECT), and (b) whether the packet
experienced congestion (CE).

● TCP uses two new bits: ECE (ECN-Echo, to report that a
packet was received with the CE bit set -- bit before
URG), and CWR (Congestion Window Reduced, bit
before ECE), to indicate that the ECE bit was received.

● compatible with hosts and routers that don't do ECN

13

typical usage of ECN

● senders can set ECT
● routers can change ECT to CE to record that

congestion was experienced, perhaps instead
of dropping a packet

● transport layer is informed of CE, sends an
ECE

● receiver of ECE reduces congestion window,
sends CWR

14

FIFO queueing

● each packet is placed at the end of the queue
● packets (that take the same route) are never

reordered
● delay is proportional to queue size
● works reasonably well in Internet, with TCP

congestion control
● if all but one sender do congestion control, and one

does not, the one that doesn't (IP telephony,
multicasting) might grab much of the bandwidth

15

Fairness

● "everyone" gets the same treatment
● hard to do in a distributed system:
● local fairness (every flow gets the same treatment

on this router) discriminates against flows that
cross more routers (parking garage problem)

● global fairness requires global co-ordination, so
local fairness is often the best we are willing to do

16

Fair Queueing

● one FIFO queue for each flow
● packets are taken in round-robin order from

each queue that has them
● problem: large packets counted the same as

small packets
● logically, we want to send one bit from each

flow in round-robin order

17

Fair Queueing with different size
packets

● the virtual clock ticks once for each bit sent from each of the queues
● so if there are more active queues, that means the virtual clock

advances more slowly
● the virtual finish time for a packet is its start "time" plus the size of the

packet
● the virtual start time of a packet is the largest of:

● the finish time for the previous packet in the queue (a computed quantity), or
● the actual virtual arrival time of the packet

● to be fair, select and transmit the packet with the lowest virtual finish
time

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

