Computer Networks
ICS 651

congestion collapse

congestion control: TCP Reno
congestion control: TCP Vegas
congestion control: TCP cubic

other ways of detecting congestion
addressing congestion

router intervention

Internet Explicit Congestion Notification
FIFO queueing

fair gueueing

TCP summary so far

reliable transmission:

e sequence and acknowledgement numbers
— counting bytes (not packets)
e retransmission if no ack is received by timeout

 checksum for correctness
 flow control window to regulate sending speed

ports and demultiplexing

optimizations: Nagle algorithm and delayed acks
TCP options

push and urgent

next topic: congestion control window

Router Congestion

assume a fast router
two gigabit-ethernet links receiving lots of outgoing data

one (relatively) slow internet link (10 Mb/s uplink speed)
sending the outgoing data

If the two links send more than a combined 10 Mb/s over
an extended period, the router buffers will fill up

eventually the router will have to discard data due to
congestion: more data being sent than the line can carry

Congestion Collapse

assume a fixed timeout
If | have n bytes/second to send, | send them

If they get dropped, | retransmit them (total 2n bytes/second, 3n
bytes/second, ...)

when there Is congestion, packets get dropped

If everybody retransmits with fixed timeout, the amount of data sent
grows, increasing congestion

* S0 some congestion (enough to drop packets) causes more congestion!!!!
eventually, very little data gets through, most is discarded

the network is (nearly) down

TCP Reno

» exponential backoff: if retransmit timer was t before retransmission, it becomes 2t
after retransmission

» careful RTT measurements give retransmission as soon as possible, but no sooner

* keep a congestion window:

effective window is lesser of: (1) flow control window, and (2) congestion window
congestion window is kept only on the sender, and never communicated between the peers

congestion window (cwin) starts at 1 MSS, grows by 1 MSS for every MSS acked: this is the
exponential growth phase of the congestion window, called slow start

on a retransmission, thresh = cwin / 2, and cwin = 1
then, use slow start while cwin < thresh

then (after cwin >= thresh) for each ack, add to the window the value MSS *
newly-acked/window: this adds one MSS to the window for each whole window that is acked
(typically, once every RTT) resulting in linear growth

fast retransmit is similar -- interesting details at RFC 2001.

RTT Estimate

RFC 1122, section 4.2.3.1

RTT estimate must be accurate, or TCP will incorrectly assume
that the network is congested

Karn/Partridge algorithm: don't use retransmitted segments for
RTT estimation.

for accurate RTT estimate, keep a running average of RTTs:
RTTaverage, = (1 - alpha) RTTaverage, , * alpha RTT,

For example, alpha = 0.125 (1/8).
Could set the timeout to RTT, * 2.

but also keep track of the variance in RTT

Jacobson/Karels algorithm

receive an ack with round-trip-time RTT,

New estimate: RTTaverage, = (1 - alpha) RTTaverage, , +
alpha RTT,

Deviation average:
DevAve, = (1-beta) DevAve, , + beta |RTT -RTTAverage, ,|

Timeout: Timeout, = u RTTaverage, + phi DevAve,

0 < delta < 1 (typically, delta = 1/8 for RTTaverage, and 1/4 for Dev)
u=1
phi=4

TCP Vegas

Reno detects congestion after it happens

Reno also causes congestion by increasing the window until congestion
occurs

early congestion detection: as queues get filled in the router, packets take
longer, so the RTT increases

when RTT gets bigger, we can slow our sending
when RTT gets back to minimum, we can increase our sending

TCP Vegas had all the features of TCP Reno, plus congestion avoidance
when the RTT increased above the minimum

not standard, but tested to work well

» works particularly well on networks that would otherwise see large queueing
delays

TCP cubic

window size grows with the cube of the time since the last congestion

* prior congestion control algorithms define window growth in terms of round-trip times
» growth based on real time is more fair to congestions with longer RTTs

W, ... =Ct—K)pPE+W,__

W._.. is the window size at which congestion is detected

K = cuberoot(BW,, / C)

BW,.., is the new, small window after congestion is detected

cubic

window increase from BW,__, is initially fast, slows down around W__,, and as long as
no congestion is detected, increases again more and more quickly

fairness: flows with initially larger W__ have a larger K, so increase more
slowly

cubic is now the default for Linux, MacOS, Windows <+~

X

CUBIC: A New TCP-Friendly High-Speed TCP Variant

Injong Rhee, and Lisong Xu
Fig. 2: The Window CGrowth Function of CUBIC

Detecting and Addressing
Congestion

* detecting congestion:

e queues get longer
 RTT gets bigger
« data/ RTT (power) starts to drop as you try to send more

* addressing congestion:

 additive increase/multiplicative decrease (needed for stability if
congestion Is occurring)

 additive increase/additive decrease (TCP Vegas) -- works as long as
congestion can be avoided

e setting flow rate
e bandwidth reservation

Router Intervention to Avoid or
React to Congestion

Random Early Discard (RED) -- causes TCP Reno to back off

Information feed-forward -- the receiver must then return congestion
Information to the sender (see Internet ECN, below)

Information feedback -- requires route back to sender, does not work
In Internet (except source quench ICMP, which is deprecated)

communication time from router to sender may be insufficient if
sender is sending lots of stuff. Also, stabllity issues -- all senders
could increase their sending rate at the same time

credits: can only send as much as we have in the "bank",
automatically (but not immediately) replenished

* similar to a window

Internet Explicit Congestion
Notification

* ECN, explicit congestion notification, RFC 3168.

* in ECN, two of the bits of the Type of Service (ToS) field
are used to indicate (a) whether congestion notification
Is requested (ECT), and (b) whether the packet
experienced congestion (CE).

 TCP uses two new bits: ECE (ECN-Echo, to report that a
packet was received with the CE bit set -- bit before
URG), and CWR (Congestion Window Reduced, bit
before ECE), to indicate that the ECE bit was received.

e compatible with hosts and routers that don't do ECN

typical usage of ECN

senders can set ECT

routers can change ECT to CE to record that
congestion was experienced, perhaps instead
of dropping a packet

transport layer Is informed of CE, sends an
ECE

receiver of ECE reduces congestion window,
sends CWR

FIFO gueueing

each packet is placed at the end of the queue

packets (that take the same route) are never
reordered

delay Is proportional to queue size

works reasonably well in Internet, with TCP
congestion control

If all but one sender do congestion control, and one
does not, the one that doesn't (IP telephony,
multicasting) might grab much of the bandwidth

Fairness

"everyone" gets the same treatment
hard to do In a distributed system:

local fairness (every flow gets the same treatment
on this router) discriminates against flows that
Cross more routers (parking garage problem)

global fairness requires global co-ordination, so
local fairness is often the best we are willing to do

Fair Queueing

* one FIFO queue for each flow

* packets are taken in round-robin order from
each queue that has them

* problem: large packets counted the same as
small packets

* logically, we want to send one bit from each
flow In round-robin order

Fair Queueing with different size
packets

the virtual clock ticks once for each bit sent from each of the queues

so if there are more active queues, that means the virtual clock
advances more slowly

the virtual finish time for a packet is its start "time" plus the size of the
packet

the virtual start time of a packet is the largest of:
* the finish time for the previous packet in the queue (a computed quantity), or
 the actual virtual arrival time of the packet

to be fair, select and transmit the packet with the lowest virtual finish
time

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

