Computer Networks
ICS 651

TCP delayed acks
Bandwidth-Delay product

TCP streams and push
TCP header

TCP options

tcpdump and wireshark

TCP delayed acks

* however, in a two-way stream, an ack is piggybacked on every
data segment going in the other direction

* in such a situation, receivers don't need to send acks
« and for fastest performance, should not send acks

* however, the network code doesn't know when the application
will send more data

* in a one-way stream of data, for fastest performance, a receiver should
ack every segment immediately

* To optimize this tradeoff, a receiver should ack:

 after receiving 2 MSS worth of data, or
« 20ms after receiving the first data, If totaling to less than 2 MSS

Bandwidth-Delay product

How big do | make the window?
Suppose the receiver has a small buffer of size s =512 bytes

* it will set the window to size s

 the sender is limited to s outstanding (unacked) bytes

if the sender can send 100,000 bytes/second (800Kbps), and the round-trip delay is 10ms,
the sender can only send 512 bytes 100 times per second, or at most 51,200 bytes/second

if the sender can use a window equal to the bandwidth-delay product, s = 100KB/s x 0.01s =
1,000 bytes, it can send at full speed

a window >= to the bandwidth-delay product allows sending at full speed, whereas
a window < the bandwidth-delay product unnecessarily slows down the sender

sending at full speed requires a large window on networks with large bandwidth-delay
products, such as:

* high-bandwidth networks such as gigabit and 10-gig ethernet, microwave and light links including fiber
optic links, and

* high-latency networks, especially networks with links over satellites

TCP window scaling

the window field in the TCP header is 16 bits, so the largest window is 65,535 bytes

this is not enough for full bandwidth on a 1ms (RTT) gigabit ethernet, with a bandwidth-delay
product of 1Mb = 125KB

* let alone on networks with higher bandwidth-delay products
so TCP provides a window scaling option, sent with the SYN packet
the option only takes effect if both sides send a window scaling option with their SYN packet

if | send a window scale with a value of n, where 0 <= n <= 14, then | must divide the windows that
| send by 2n

correspondingly, if | receive a window scale with a value of n, then | must multiply the windows that
| receive by 2n

since n <= 14, the maximum window size is < 23° bytes

window scaling is defined in RFC 1323, "TCP Extensions for High Performance", which also
provides protection against wrapped sequence numbers

* on networks with high bandwidth-delay product there could relatively easily be over 4GB of data in transit at
any given time, and without this extension, there could be multiple packets in transit at the same time with the
same 32-bit TCP sequence number

TCP streams and push

TCP actually has a segmentation bit: PSH, or push

when the application "pushes" the data, that information could
be conveyed all the way to the application at the other end

If TCP can coalesce several user segments (each with PSH)
Into one TCP segment, that TCP segment can only carry one
PSH bit

so passing PSH to the application is optional, and TCP has no
record boundaries

so push is an advisory bit only: it encourages TCP (and the
application) to send the data as promptly as possible

TCP header

0 1 2 3
0123456789 0123456789012345¢67289°01
t—t—t—t—t -ttt —F -t~ —+—+
| Source Port | Destination Port |
t—t—t—t—t—t—t—t—t—Ft—F—F—F—t—t—F—F—F—F—t—F—F—F—F—F—F—F—F—F—F—+—+—+
| Sequence Number |
Fot—t—t ottt —t—F—F—F—F—t—F—F—F—F—+—+—+

| Acknowledgment Number |
t—t—t—t—t—t -ttt -ttt —F—F—F -ttt —F—t—F—F—F—F—F—+—+—+
| Data | |[UIA|P|RIS|F| |
| Offset| Reserved |R|IC|S|S|Y|I] Window |

TCP header fields

» Source and Destination port: demultiplexing

* Seguence and acknowledgement: reliable
delivery

* Data Offset: header size, options

* Window: flow control

* Checksum: correctness

* Urgent Pointer: "special place" in the data stream

TCP header bits

SYN: | want to establish a connection

FIN: | will never again send data on this connection

RST: kill this connection

PSH: immediate delivery of this data is probably a good idea
URG: the urgent pointer is valid

ACK: the acknowledgement field is valid (set in all but the first SYN
packet)

ECE: this packet acknowledges a packet received with the IP
"congestion experienced" bit set

CWR: the sender of this packet has reduced its congestion window
the last two bits will be discussed in the context of congestion control

TCP options

 TCP options may follow the basic header

* most TCP options are only sent with the SYN
and SYN+ACK packets

* can you guess the format of TCP options?

wOptions: (20 bytes), Maximum segment size, SACK permitted, Timestamps, No-Operation (MOP), Window scale
P Maximum segment slze: 65495 bytes
B TCP SACK Permitted Option: True

P Timestamps: TSval 104407068, TSecr O
P No-Operation (MNOP)
pWindow scale: 7 (multiply by 128)

0000 OO0 DO 0D OO OO OO QD DO OO 0D OO OO0 OB 00 45 00e cevnen E.
0010 00 3c 2f 4c 40 00 40 06 od 6e 7f 00 00 01 7f 0O LEGE. Wne e
0020 00 01 ¢3 50 2b 67 a7 43 0Of 50 00 00 00 00 a0 02 P e+ [P S

0030 aa aa fe 20 00 00 02 04 ff d7

oL rROE Da 05 39
0040 |EoinisNooooMelolce 01 @3 03 07

v Options: (20 bytes), Maximum segment size, SACK permitted, Timestamps, MNo-Operation (NOP), Window scale

B Maximum segment size: 55495 bytes
BTCP SACK Permitted Option: True
PTimestamps: TSval 104407068, TSecr 104407068
B MNo-Operation (NOR)
pWindow scale: 7 (multiply by 128)
B [SEQ/ACK analysis]

00 0D OO 0D 00 OO 0D 0O 00 0D DO 0D B8 00 45 00o.ccus .
00 3c 00 00 40 00 40 06 3c ba 7f 00 00 01 7f 0O PR P P
00 01 2b 67 ¢3 50 2f e5 28 ff a7 43 of 51 a0 12
EEREERGRCCRCece02 04 ff d7 04 02 08 Qa 06 39

20 1c 06 39 20 1c 01 02 03 0O

tcpdump and wireshark

* tcpdump is a utility to look at all the packets on the
network and print out the headers

16:41:58.905998 maru.ics.hawaii.edu.14407
>volcano.telnet: S 2671654129:2671654129 (0)win
512 [tos 0x10]16:41:59.115893 volcano.telnet

>maru.ics.hawaili.edu.14407: R 0:0(0)ack
2671654130 win O

* wireshark (formerly known as Ethereal) is similar but
(a) window-based, (b) newer

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

AN @ BAREG QCI»VIHAETF e o E

[W|Apply a display filter ... <Ctrl-/>

=3 -| Expression... +
No. Time Source Destination Protoco Length Info k=
148 28.8062596.. Te80::928d:14ef:fa6f:daab ffe2:al119:16ca:1.. ICMP.. 86 Multicast Listener Report
49 29.0054550.. fTe80::3e6l:4ff:feSa:elcl f :5 OSPF 90 Hello Packet | |
150 29.9971047 Cisco_f7:11:84 DP/VTP/DTP/PAQP DTP 50 Dynamic Trunk Prot 1
151 29.9971613.. Cisco_f7:11:84 CDP/VTP/DTP/PAgQP.. DTP 90 Dynamic Trunk Protocol -
E

b Frame 149: 90 bytes on wire (720 bits), 90 bytes captured (720 bits) on interface ©
» Ethernet II, Src: JuniperN_5a:el:cl (3c:61:04:5a:el:cl1), Dst: IPv6mcast_05 (33:33:00:08:088:85)

Internet Protocol Version 6, Src: TeB0::3e6l1l:4ff:feSa:elcl, Dst: ffe2::5
@118 = Version: 6

Po.... BB0O0 @00 e e e Traffic Class: Ox00 (DSCP: CS0, ECN: Not-ECT)
it erae DDOE COOO DOOE OOOD EEEO = Flow Label: Ox0QO00
Payload Length: 36
Next Header: OSPF IGP (89)
Hop Limit: 1
Source: TeB80::3e61:4ff:feba:elicl
Destination: ff@2::5
[Source SA MAC: JuniperN_5a:el:cl (3c:61:04:5a:el:cl)]
[Source GeoIP: Unknown]
[Destination GeoIP: Unknown]

~ Open Shortest Path First
» OSPF Header
b OSPF Hello Packet

elelelo]
eel1e
Be2e
0O30
0040
Be50

Internet Protocol Version 6 (ipve), 40 bytes Packets: 154 - Displayed: 154 (100.0%) Profile: Default

tcpdump example

16:47:02.285753 maru.1022 > volcano.ssh:
S 185741093:185741093(0) win 512
16:47:02.495648 volcano.ssh > maru.1022:
S 3829593384:3829593384 (0)
ack 185741094 win 16352
16:47:02.495648 maru.1022 > volcano.ssh:
. ack 1 win 32120 (DF)
16:47:07.183328 volcano.ssh > maru.1022:
P 1:16(15) ack 1 win 16352 (DF)
16:47:07.183328 maru.1022 > volcano.ssh:
P 1:16(15) ack 16 win 32120 (DF) [tos 0x10]
16:47:07.433203 volcano.ssh > maru.1022:
P 16:292(276) ack 16 win 16352 (DF)
16:47:08.502673 volcano.ssh > maru.1022:
P 16:292(276) ack 16 win 16352 (DF)
16:47:08.522663 maru.1022 > volcano.ssh:
ack 292 win 32120 (DF) [tos 0x10]

TCP summary so far

reliable transmission:

e seqguence and acknowledgement numbers
— counting bytes (not packets)
e retransmission if no ack is received by timeout

* checksum for correctness
 flow control window to regulate sending speed

ports and demultiplexing

optimizations: Nagle algorithm and delayed acks
TCP options

push and urgent

next topic: congestion control window

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

