
1

Computer Networks
ICS 651

● TCP connection management
● TCP 3-way handshake
● TCP close
● TCP reset
● Reliable Transmission
● Sliding Window for Flow Control

2

TCP connection establishment

● when I receive a request to establish a connection, I
must check:
● that I don't already have this socket: one or more of the port

numbers or IP numbers must differ from existing connections
● that an application on my end desires to be connected
● that I have sufficient resources to handle this connection

● the purpose of the connection establishment phase is
to set up consistent connection state on the two peers

3

TCP 3-way handshake

● from state CLOSED:
● send SYN, enter state SYN SENT
● receive SYN and ACK, send ACK,

enter state ESTAB, or
● receive SYN, send ACK, enter

state SYN RCVD, then proceed
as below

● from state LISTEN:
● receive SYN, send SYN and ACK,

enter state SYN RCVD
● receive ACK, enter state ESTAB

● retransmissions in case any of
these are dropped

● see page 23 of RFC 793

4

TCP close

● from state ESTAB:
● receive FIN, send ACK, enter

state CLOSE WAIT
● application closes connection,

send FIN, enter state LAST ACK
● receive ACK, enter state

CLOSED
● from state ESTAB:

● application closes connection,
send FIN, enter state FINWAIT-1

● receive FIN, send ACK, enter
state CLOSING

● receive ACK, enter state TIME
WAIT

5

TCP close, part 2

● from state FINWAIT-1, if
we get an ACK:
● receive ACK, enter state

FINWAIT-2
● receive FIN, send ACK,

enter state TIME WAIT
● from state TIME WAIT,

enter state closed after 4
minutes (2 maximum
segment lifetimes):
● last ack issue

6

TCP reset

● what should I do if I get a TCP segment for a connection
that I have no record of?

● tell the sender to reset its connection
● If I am opening the connection and the segment I

receive has an acknowledgement number I've never
used, it might be an old segment. Again, reset the
connection

● If the application program terminates, no sense in
waiting for all the data to be delivered using the normal
close

7

Reliable Transmission

● IP is not reliable: packets may be lost, reordered, or
corrupted

● corruption is handled by the TCP checksum
● for packet loss or reordering, use acknowledgements:

● each data packet must carry a sequence number
● the sequence number tells us if data is out of order
● for each data packet we receive, we send an empty (header only,

no payload) acknowledgement packet stating that we got the data
● if no ack is received within a certain time, we need to retransmit

that packet

8

TCP sequence and
acknowledgement numbers

● sequence and acknowledgement are 32-bit numbers
● carried in every packet (except only sequence number is

valid in SYN)
● acks only sent in response to packets carrying data or SYN

or FIN
● acks are cumulative: ack i acknowledges all the data up to

sequence number i - 1
● sequence and ack numbers count bytes (+ SYN and FIN

bits), not packets
● useful e.g. with MTU discovery, retransmission of many small

packets consolidated into one larger packet
● three duplicate acks are taken as a negative ack

(NAK/NACK) inviting -- but not requiring -- retransmission

9

The need for flow control

● IP gives us ability to send end-to-end
● sequence and ack give us ability to reliably

(modulo checksum) deliver data to application
● still missing: flow control, the ability to slow

down the sender if the receiver is slow
● receiver buffers are limited
● why send if the receiver has no space?

10

TCP flow control

● with each ack, the receiver specifies
how many more bytes past the ack
the receiver is willing to accept

● the number of bytes is the window
● the window is sliding every time a

new ack pushes its left edge to the
right in sequence space

● the sender may have sent some of
those bytes already -- because they
were in the previous window

● when the sender exhaust the
window, it must stop sending

11

TCP window

● the left edge of the TCP window is moved to the
right by the receiver when it acknowledges new
data

● the right edge of the TCP window is moved to the
right by the receiver when it sends a window
update

● the left edge of the TCP window is communicated
to the sender by the acknowledgement number

● the right edge of the TCP window is
communicated to the sender by the window field

12

TCP data transfer example

● A to B: seq 1, ack 1000000, window 100, 200
bytes of data

● A to B: seq 201, ack 1000000, window 100, 800
bytes of data

● B to A: seq 1000000, ack 201, window 1000, 0
bytes of data

● A to B: seq 1001, ack 1000000, window 100,
200 bytes of data

13

Zero windows

● suppose the window size is reduced to zero:
receiver acks, and says it has a window size of
zero, since all buffers are full

● later the receiver reopens the window by sending
a new ack with a new window

● that ack is lost!
● deadlock: sender is waiting for window update,

receiver is waiting for new data
● a sender with data to send, and a zero send

window, must periodically send one byte past the
window, to elicit an ack in response

14

Silly Window Syndrome

● receiver will move right edge of window by a small amount when it
receives a small amount of data

● if sender is window-limited, it will then send a small segment
● this is undesirable, because small segments have more overhead,

and because the receiver is likely to expand the window soon
● solution:

● receiver must move right edge of window in increments of at least 1 MSS
or 1/2 the actual window, whichever is less

● sender increment its send window in increments of at least 1 MSS or 1/2
the estimated receiver's window, whichever is less

● sender needs a timer so, when the timer expires, can send less than 1/2
the estimated window -- this avoids deadlock in case the estimate for the
receiver's window is wrong (for example if the receiver's window got
smaller)

15

Nagle algorithm

● two conflicting goals:
● send data as fast as possible, and
● don't send small packets, which have higher overhead

(only significant if the network is busy/congested)
● solutions:

● always send if the network is not busy -- send the first
packet when all that was sent before has been acked

● always send any maximum sized packet (either MSS, or at
least 1/2 of the estimated receive window)

● otherwise wait a little while to send, until either one of the
above holds, or a timer expires

16

Nagle algorithm and sender SWS
from RFC 1122, section 4.2.3.4

● the usable window is the number of bytes I could send given the ack,
window, and the next sequence number to send:

U = ack + wnd - nxt
● D is the amount of new data I am ready to send
● send any time I can send a maximum-sized segment,

min(D,U) >= MSS
● send if all sent data has been acked, i.e. there are no pending acks,

and the window is large enough to send all the data I am ready to send

nxt = ack and (D <= U or min(D, U) >= rcvbuff / 2)
● the second condition (D <= U or min(D, U) >= rcvbuff / 2) avoids SWS on fast

connections
● because if D > U, the amount of data sent will be determined by the window

size U, and that may lead to SWS
● or send if the override timeout expires

● this timer may be combined with the timer for zero windows

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

