Computer Networks
ICS 651

TCP connection management
TCP 3-way handshake
TCP close

TCP reset

Reliable Transmission
Sliding Window for Flow Control

TCP connection establishment

 when | receive a request to establish a connection, |
must check:

* that | don't already have this socket: one or more of the port
numbers or IP numbers must differ from existing connections

* that an application on my end desires to be connected
 that | have sufficient resources to handle this connection

* the purpose of the connection establishment phase is
to set up consistent connection state on the two peers

TCP 3-way handshake

e from state CLOSED:
e send SYN, enter state SYN SENT

» receive SYN and ACK, send ACK, S¥YN-SENT

enter state ESTAB, or

* receive SYN, send ACK, enter
state SYN RCVD, then proceed
as below

e from state LISTEN:

* receive SYN, send SYN and ACK,
enter state SYN RCVD

* receive ACK, enter state ESTAB

* retransmissions in case any of
these are dropped

e see page 23 of RFC 793

CLOSED

ESTAB

client SETVET

5YN

SYN+ACK

ACK

/

time increases downwards

LISTEN

SYN-RECVD

ESTAB

TCP close

&
=

ESTAB

* from state ESTAB: e FTAR

* receive FIN, send ACK, enter _
state CLOSE WAIT ACK CLOSE-WAIT

* application closes connection, FINWATT-2
send FIN, enter state LAST ACK

* receive ACK, enter state CKs
CLOSED

e from state ESTAB:

* application closes connection, TIME-WAIT
send FIN, enter state FINWAIT-1

* receive FIN, send ACK, enter CLOSED
state CLOSING

* receive ACK, enter state TIME
WAIT

b/

FIN LAST-ACK

ACK

CLOSED

TCP close, part 2

=

ESTAB

* from state FINWAIT-1, If FNWATT |
we get an ACK:

ESTAB

/

ACK CLOSE-WAIT

* receive ACK, enter state I ;
FINWAIT-2 <
* receive FIN, send ACK,

enter state TIME WAIT

e from state TIME WAIT,
enter state closed after 4 HVETAT
minutes (2 maximum CLOSED

CLOSED

segment lifetimes): =

e |ast ack issue

FIN LAST-ACK

ACK

TCP reset

what should | do If | get a TCP segment for a connection
that | have no record of?

tell the sender to reset Its connection

If | am opening the connection and the segment |
receive has an acknowledgement number I've never

used, it might be an old segment. Again, reset the
connection

If the application program terminates, no sense Iin

waiting for all the data to be delivered using the normal
close

Reliable Transmission

* |P is not reliable: packets may be lost, reordered, or
corrupted

 corruption is handled by the TCP checksum

 for packet loss or reordering, use acknowledgements:

e each data packet must carry a sequence number
* the sequence number tells us if data is out of order

* for each data packet we receive, we send an empty (header only,
no payload) acknowledgement packet stating that we got the data

* If no ack is recelved within a certain time, we need to retransmit
that packet

TCP sequence and
acknowledgement numbers

sequence and acknowledgement are 32-bit numbers

carried in every packet (except only sequence number is
valid in SYN)

acks only sent in response to packets carrying data or SYN
or FIN

acks are cumulative: ack | acknowledges all the data up to
sequence numberi- 1

sequence and ack numbers count bytes (+ SYN and FIN
bits), not packets

» useful e.g. with MTU discovery, retransmission of many small
packets consolidated into one larger packet

three duplicate acks are taken as a negative ack
(NAK/NACK) Inviting -- but not requiring -- retransmission

The need for flow control

* |P gives us abllity to send end-to-end

* sequence and ack give us abillity to reliably
(modulo checksum) deliver data to application

* still missing: flow control, the ability to slow
down the sender if the receliver is slow

* receiver buffers are limited
* why send If the receiver has no space?

TCP flow control

with each ack, the receiver specifies
how many more bytes past the ack
the receiver is willing to accept

the number of bytes is the window

the window is sliding every time a
new ack pushes its left edge to the
right in sequence space

the sender may have sent some of
those bytes already -- because they
were In the previous window

when the sender exhaust the
window, it must stop sending

TCP window

* the left edge of the TCP window Is moved to the
right by the receiver when it acknowledges new

data

* the right edge of the TCP window is moved to the
right by the receiver when it sends a window
update

* the left edge of the TCP window Is communicated
to the sender by the acknowledgement number

* the right edge of the TCP window is
communicated to the sender by the window field

TCP data transfer example

 Ato B: seqg 1, ack 1000000, window 100, 200
bytes of data

 Ato B: seq 201, ack 1000000, window 100, 800
bytes of data

* B to A: seq 1000000, ack 201, window 1000, O
bytes of data

 Ato B: seq 1001, ack 1000000, window 100,
200 bytes of data

Zero windows

suppose the window size is reduced to zero:
receiver acks, and says it has a window size of
zero, since all buffers are full

later the receiver reopens the window by sending
a new ack with a new window

that ack Is lost!

deadlock: sender is waiting for window update,
receiver Is waiting for new data

a sender with data to send, and a zero send
window, must periodically send one byte past the
window, to elicit an ack in response

Silly Window Syndrome

receiver will move right edge of window by a small amount when it
receives a small amount of data

If sender is window-limited, it will then send a small segment

this is undesirable, because small segments have more overhead,
and because the receiver is likely to expand the window soon

solution:

* receiver must move right edge of window in increments of at least 1 MSS
or 1/2 the actual window, whichever is less

e sender increment its send window in increments of at least 1 MSS or 1/2
the estimated receiver's window, whichever is less

* sender needs a timer so, when the timer expires, can send less than 1/2
the estimated window -- this avoids deadlock in case the estimate for the
receiver's window is wrong (for example if the receiver's window got
smaller)

Nagle algorithm

 two conflicting goals:
* send data as fast as possible, and

* don't send small packets, which have higher overhead
(only significant if the network Is busy/congested)

e solutions:

* always send if the network is not busy -- send the first
packet when all that was sent before has been acked

* always send any maximum sized packet (either MSS, or at
least 1/2 of the estimated receive window)

e otherwise wait a little while to send, until either one of the
above holds, or a timer expires

Nagle algorithm and sender SWS
from RFC 1122, section 4.2.3.4

the usable window Is the number of bytes | could send given the ack,
window, and the next sequence number to send:

U = ack + wnd - nxt
D is the amount of new data | am ready to send

send any time | can send a maximum-sized segment,

min(D,U) >= MSS
send If all sent data has been acked, i.e. there are no pending acks,
and the window is large enough to send all the data | am ready to send

nxt = ack and (D <= U or min(D, U) >= rcvbuff / 2)

 the second condition (D <= U or min(D, U) >= rcvbuff / 2) avoids SWS on fast
connections

* because if D > U, the amount of data sent will be determined by the window
size U, and that may lead to SWS

or send if the override timeout expires
* this timer may be combined with the timer for zero windows

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

