Computer Networks
ICS 651

Network Device Design

Device Drivers

Multicasting Algorithms and IP Multicasting
Overview of TCP

TCP connection management

TCP 3-way handshake

TCP close

TCP reset

Network Interface Device

Networking Hardware, NIC (Network Interface Card)

UART/USART, Universal [Synchronous /] Asynchronous
Receiver Transmitter

UART is a single-chip device that accepts or returns data
depending on the address on the computer's bus

the hardware device has bits which control its operation (e.g. a
bit to decide whether to interrupt the host). These are grouped
Into one or more control registers

the hardware device has bits which record events (e.g. a bit to
record whether a character was received, but not given to the
host). These are grouped into one or more status registers

NIC for packet networks

OS configures device at initialization time

 often by building a descriptor in memory, and writing the address of this descriptor to a
control register

device can directly access (read and write) the computer's memory -- Direct Memory Access,
DMA

when a packet is received, the device copies the contents to a buffer pre-allocated by the OS,
then interrupts

interrupt handler processes the packet, checks device status, allocates new buffers to the
device

to send, device driver writes to a control register the address of a linked list of buffers to send

* one buffer per packet, or sometimes

* multiple buffers for a single packet: one buffer for the headers, one buffer for user data
(scattered representation)

device interrupts once the packets have been sent

Device Drivers

* The device-specific part of an Operating System is called a device driver

* device drivers are often loaded on demand as the OS discovers new
hardware

* e.g. Linux modules
* a device driver for a network device usually includes:

* |nitialization code

* an interrupt handler: this is the “bottom half” of the driver, called by the
hardware

- the system interrupt handler calls the device-specific interrupt handler

* code to send data to the network: this is the “top half’ of the driver,
(ultimately) called by user programs

Multicasting: Ideas and Reality

* Audio and video conferencing: (usually) one sender at a time, potentially many
recipients

* Reality: the sender has a connection to/from each participant, sends a
customized data stream to each

* from a central server with high bandwidth
* the originator of the data sends to this server

* |dea: intermediate routers can duplicate data streams “for free” (just by adding

the same packet to multiple queues). Each sender would then be able to send
a single stream of data, and reach all the recipients

* decentralized, each participant needs the same bandwidth as every other
participant

* the automatic distribution of a single packet to multiple destinations is what
network people mean by multicasting

Multicasting on a broadcast-based
Local Area Network (LAN)

* multicasting requires that the hardware device of the intended recipients
process the packet

« all other systems on the network discard the packet, either in the device
hardware (most efficient) or in software (less efficient)

« modern LAN hardware is designed to accept packets for its own unchangeable
MAC address, for the broadcast address ff:ff:ff:ff:£f:ff, and also for
a finite number of addresses configured at runtime: this makes LAN multicast
very efficient as long as senders know which special MAC address to use

* |Pv6 multicast packets sent to an IPv6 address ending in the four bytes
aabb:ccdd are sent to the MAC address 33:33:aa:bb:cc:dd

* RFC 2464

» so for example the routing packets in Project 1 sent to ff02::1, if they were
sent on a LAN, would be sent to the MAC address 33:33:00:00:00:01

ldeal Multicast across Routers

* Routers must know where to forward multicast packets

 |eaf-initiated join: request packet from the host takes the reverse route towards the sender

- when the request packet reaches a router that is already carrying the multicast stream,
the router starts forwarding the stream over the interface on which it received the request

- sound familiar?

« sender-managed multicast: sender must configure routers to forward multicast packets to all
the correct destinations

» arendez-vous point (RP) is a central server that can act as the “sender” here, merging data
streams from multiple actual senders

» Either way, only works if there are routers supporting multicast
e easier to set up within an autonomous system
* Protocols that support IP multicast include:
* Protocol-Independent Multicast (PIM), which has several variants, and
* Multicast Source Discovery Protocol (MDSP), which can be used across domains

The need for TCP

* the task of IP Is to transfer packets of data end-to-end

* packets may be lost, corrupted, reordered (even mis-
delivered)

* applications could use IP directly, but:

* need a way to demultiplex data at the receiver, so multiple
applications can run simultaneously

* most applications require reliable data delivery

* applications may need to send packets larger than the
largest possible IP datagram

* a fast sender could overwhelm a slow receiver, causing
loss of data

Overview of TCP

* uses IP to gain (unreliable) end-to-end
connectivity

* uses port numbers for demultiplexing to multiple
applications

* uses checksum to discard corrupted data

* Uses sequence numbers to detect lost and
reordered packets

* uses acknowledgments and retransmission for
reliable delivery

* uses windows to avoid overwhelming the
receiver

* provides streams to overcome any packet size
limitations

TCP connections

* sequence numbers, windows, etc. must be remembered
and applied to incoming packets

* remembering these numbers is a form of state

* since TCP has state, designers decided to have the peers
explicitly manage this state (called a connection)

* the peers agree on when to establish (open) a connection,
when to tear it down (close), and when the connection must
be thrown away (reset)

* the state on each system reflects an understanding about
the state on the peer

TCP connection establishment

* when | receive a request to establish a connection, | must
check:

* that | don't already have this socket: one or more of the
port numbers or IP numbers must differ from existing
connections

* that an application on my end desires to be connected
* that | have sufficient resources to handle this connection

* the purpose of the connection establishment phase is to set
up consistent connection state on the two peers

TCP 3-way handshake

* from state CLOSED:
* send SYN, enter state SYN SENT
* receive SYN and ACK, send ACK, enter state ESTAB, or

* receive SYN, send ACK, enter state SYN RCVD, then
proceed as below

* from state LISTEN:
* receive SYN, send SYN and ACK, enter state SYN RCVD
* receive ACK, enter state ESTAB

* retransmissions in case any of these are dropped

*see page 23 of RFC 793

TCP close

* from state ESTAB:
* receive FIN, send ACK, enter state CLOSE WAIT

* application closes connection, send FIN, enter state LAST
ACK

* receive ACK, enter state CLOSED
* from state ESTAB:

* application closes connection, send FIN, enter state
FINWAIT-1

* recelve FIN, send ACK, enter state CLOSING
* receive ACK, enter state TIME WAIT

TCP close, part 2

* from state FINWAIT-1, if we get an ACK:
* receive ACK, enter state FINWAIT-2
* recelve FIN, send ACK, enter state TIME WAIT

* from state TIME WAIT, enter state CLOSED after 4 minutes
(2 Maximum Segment Lifetimes)

* last ack issue

TCP reset

* what should | do if | get a TCP segment for a connection
that | have no record of? -- tell the sender to reset its
connection

* If | am opening the connection and the segment | receive
has an acknowledgement number I've never used, it might be
an old segment. Again, reset the connection

* If the application program terminates, no sense in waiting for
all the data to be delivered using the normal close

ATM connection establishment

* Asynchronous Transfer Mode, Q.293b
* typical of public carrier protocols

* a connection request may elicit a response or an
acknowledgement

* eventually we expect to get a response, which we
acknowledge

* less focus on efficiency and light weight, more focus on
iInforming the "application" of the current status

* sighaling and connections are always point-to-point, not
end-to-end (in other words, the inter/network layer is
connection-oriented)

* this makes it easier to allocate resources to connections

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

