
1

Computer Networks
ICS 651

● Network Device Design
● Device Drivers
● Multicasting Algorithms and IP Multicasting
● Overview of TCP
● TCP connection management
● TCP 3-way handshake
● TCP close
● TCP reset

2

Network Interface Device

● Networking Hardware, NIC (Network Interface Card)

● UART/USART, Universal [Synchronous /] Asynchronous
Receiver Transmitter

● UART is a single-chip device that accepts or returns data
depending on the address on the computer's bus

● the hardware device has bits which control its operation (e.g. a
bit to decide whether to interrupt the host). These are grouped
into one or more control registers

● the hardware device has bits which record events (e.g. a bit to
record whether a character was received, but not given to the
host). These are grouped into one or more status registers

3

NIC for packet networks

● OS configures device at initialization time

● often by building a descriptor in memory, and writing the address of this descriptor to a
control register

● device can directly access (read and write) the computer's memory -- Direct Memory Access,
DMA

● when a packet is received, the device copies the contents to a buffer pre-allocated by the OS,
then interrupts

● interrupt handler processes the packet, checks device status, allocates new buffers to the
device

● to send, device driver writes to a control register the address of a linked list of buffers to send

● one buffer per packet, or sometimes
● multiple buffers for a single packet: one buffer for the headers, one buffer for user data

(scattered representation)
● device interrupts once the packets have been sent

4

Device Drivers

● The device-specific part of an Operating System is called a device driver

● device drivers are often loaded on demand as the OS discovers new
hardware

● e.g. Linux modules
● a device driver for a network device usually includes:

● initialization code
● an interrupt handler: this is the “bottom half” of the driver, called by the

hardware
– the system interrupt handler calls the device-specific interrupt handler

● code to send data to the network: this is the “top half” of the driver,
(ultimately) called by user programs

5

Multicasting: Ideas and Reality

● Audio and video conferencing: (usually) one sender at a time, potentially many
recipients

● Reality: the sender has a connection to/from each participant, sends a
customized data stream to each

● from a central server with high bandwidth
● the originator of the data sends to this server

● Idea: intermediate routers can duplicate data streams “for free” (just by adding
the same packet to multiple queues). Each sender would then be able to send
a single stream of data, and reach all the recipients

● decentralized, each participant needs the same bandwidth as every other
participant

● the automatic distribution of a single packet to multiple destinations is what
network people mean by multicasting

6

Multicasting on a broadcast-based
Local Area Network (LAN)

● multicasting requires that the hardware device of the intended recipients
process the packet

● all other systems on the network discard the packet, either in the device
hardware (most efficient) or in software (less efficient)

● modern LAN hardware is designed to accept packets for its own unchangeable
MAC address, for the broadcast address ff:ff:ff:ff:ff:ff, and also for
a finite number of addresses configured at runtime: this makes LAN multicast
very efficient as long as senders know which special MAC address to use

● IPv6 multicast packets sent to an IPv6 address ending in the four bytes
aabb:ccdd are sent to the MAC address 33:33:aa:bb:cc:dd

● RFC 2464
● so for example the routing packets in Project 1 sent to ff02::1, if they were

sent on a LAN, would be sent to the MAC address 33:33:00:00:00:01

7

Ideal Multicast across Routers

● Routers must know where to forward multicast packets

● leaf-initiated join: request packet from the host takes the reverse route towards the sender

– when the request packet reaches a router that is already carrying the multicast stream,
the router starts forwarding the stream over the interface on which it received the request

– sound familiar?
● sender-managed multicast: sender must configure routers to forward multicast packets to all

the correct destinations
● a rendez-vous point (RP) is a central server that can act as the “sender” here, merging data

streams from multiple actual senders
● Either way, only works if there are routers supporting multicast

● easier to set up within an autonomous system
● Protocols that support IP multicast include:

● Protocol-Independent Multicast (PIM), which has several variants, and
● Multicast Source Discovery Protocol (MDSP), which can be used across domains

8

The need for TCP

• the task of IP is to transfer packets of data end-to-end

• packets may be lost, corrupted, reordered (even mis-
delivered)

• applications could use IP directly, but:

• need a way to demultiplex data at the receiver, so multiple
applications can run simultaneously

• most applications require reliable data delivery

• applications may need to send packets larger than the
largest possible IP datagram

• a fast sender could overwhelm a slow receiver, causing
loss of data

9

Overview of TCP
● uses IP to gain (unreliable) end-to-end
connectivity
● uses port numbers for demultiplexing to multiple
applications
● uses checksum to discard corrupted data
● uses sequence numbers to detect lost and
reordered packets
● uses acknowledgments and retransmission for
reliable delivery
● uses windows to avoid overwhelming the
receiver
● provides streams to overcome any packet size
limitations

10

TCP connections

• sequence numbers, windows, etc. must be remembered
and applied to incoming packets

• remembering these numbers is a form of state

• since TCP has state, designers decided to have the peers
explicitly manage this state (called a connection)

• the peers agree on when to establish (open) a connection,
when to tear it down (close), and when the connection must
be thrown away (reset)

• the state on each system reflects an understanding about
the state on the peer

11

TCP connection establishment

• when I receive a request to establish a connection, I must
check:

• that I don't already have this socket: one or more of the
port numbers or IP numbers must differ from existing
connections

• that an application on my end desires to be connected

• that I have sufficient resources to handle this connection

• the purpose of the connection establishment phase is to set
up consistent connection state on the two peers

12

TCP 3-way handshake

• from state CLOSED:

• send SYN, enter state SYN SENT

• receive SYN and ACK, send ACK, enter state ESTAB, or

• receive SYN, send ACK, enter state SYN RCVD, then
proceed as below

• from state LISTEN:

• receive SYN, send SYN and ACK, enter state SYN RCVD

• receive ACK, enter state ESTAB

• retransmissions in case any of these are dropped

•see page 23 of RFC 793

13

TCP close

• from state ESTAB:

• receive FIN, send ACK, enter state CLOSE WAIT

• application closes connection, send FIN, enter state LAST
ACK

• receive ACK, enter state CLOSED

• from state ESTAB:

• application closes connection, send FIN, enter state
FINWAIT-1

• receive FIN, send ACK, enter state CLOSING

• receive ACK, enter state TIME WAIT

14

TCP close, part 2

• from state FINWAIT-1, if we get an ACK:

• receive ACK, enter state FINWAIT-2

• receive FIN, send ACK, enter state TIME WAIT

• from state TIME WAIT, enter state CLOSED after 4 minutes
(2 Maximum Segment Lifetimes)

• last ack issue

15

TCP reset

• what should I do if I get a TCP segment for a connection
that I have no record of? -- tell the sender to reset its
connection

• If I am opening the connection and the segment I receive
has an acknowledgement number I've never used, it might be
an old segment. Again, reset the connection

• If the application program terminates, no sense in waiting for
all the data to be delivered using the normal close

16

ATM connection establishment

• Asynchronous Transfer Mode, Q.293b

• typical of public carrier protocols

• a connection request may elicit a response or an
acknowledgement

• eventually we expect to get a response, which we
acknowledge

• less focus on efficiency and light weight, more focus on
informing the "application" of the current status

• signaling and connections are always point-to-point, not
end-to-end (in other words, the inter/network layer is
connection-oriented)

• this makes it easier to allocate resources to connections

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

