
1

Computer Networks
ICS 651

Unix Sockets API

2

Unix Sockets API – principles

● a socket is an endpoint of
communication -- we need (at least) two
sockets to communicate, just as we
need at least two telephones
● a socket pair is uniquely identified by
protocol, two IP address, and two port
numbers
● when we first create a socket, it has
only the first of these attributes, the
protocol number

3

Unix Sockets API – principles

● a socket pair is uniquely identified by:
1) protocol: TCP or UDP (8-bit numbers,
e.g. 6 for TCP, 17/0x11 for UDP)
2) two IP addresses (32-bit numbers, for
example 128.171.10.123), one for each
socket
3) for IPv6, this becomes two 128-bit
numbers
4) two port numbers (16-bit numbers,
for example 1234), one for each socket

4

Unix Sockets API
Managing Sockets

Unix Sockets API -- Managing Sockets

int socket(int domain,
 int type,
 int protocol);
creates a socket (the return value is a file

descriptor)

int close(int sockfd);
closes a socket (or any other file descriptor)

5

Unix Sockets API
Managing Sockets

close completely eliminates a socket.

Sometimes it's useful to tell the system we are done
writing on a socket:
 int shutdown(int sockfd, int how);
shuts down reading from a socket (how == SHUT_RD),

writing to a socket (how == SHUT_WR), or both

Most programs use close rather than shutdown, but
there are times when you need to indicate you will never
again write to a socket (how == SHUT_WR).

6

Unix Sockets API
connecting as a client

int connect
 (int sockfd,
 struct sockaddr *serv_addr,
 socklen_t addrlen);
requests a connection. The address is

found in the first addrlen bytes of
memory pointed to by serv_addr.

See ip(7) and ipv6(7) for details.

7

Unix Sockets API
accepting connections as a server
int bind(int sockfd,
 struct sockaddr *my_addr,
 socklen_t addrlen);
binds the given socket to the given address,

found in the first addrlen bytes of memory pointed
to by my_addr. See ip(7) and ipv6(7) for details.
 int listen(int sockfd, int backlog);
specifies willingness to accept connections, and

how many incoming connections can be queued.

8

Unix Sockets API
accepting connections as a server
int accept
 (int sockfd,
 struct sockaddr *addr,
 socklen_t *addrlen);

waits for an actual connection,
returning a new socket to be used for
communication, and the address of the
peer.

9

Unix Sockets API
Domain Names (older, easier way)
int gethostname(char *name,
 int len);

●if len is greater than the length of the
domain name of the local host, fills in name.
struct hostent *
 gethostbyname(const char *n);
given a null-terminated name (domain

name or dotted IP address), returns a host
entry, if possible. See gethostbyname(3) for
details of the hostent structure.

10

Unix Sockets AP, Domain Names
(newer, more powerful way)

int getaddrinfo
 (const char *node,
 const char *service,
 const struct addrinfo *hints,
 struct addrinfo **res);

● can return multiple addresses
● service is a port number or service name
such as http (port 80)
● hints may request a specific address type
● the result is dynamically allocated, and
must be free'd

11

Unix Sockets API
Sending Data

int send
 (int s,
 const void *buf, int len,
 int flags);
int sendto
 (int s,
 const void *msg, int len,
 unsigned int flags,
 const struct sockaddr *to,
 socklen_t tolen);
int write
 (int fd,
 const void *buf, int count);

●these return the length sent

12

Unix Sockets API
Sending Data without Connections

● send and write are equivalent (for sockets),
and are be used when the sockets are
connected. All TCP sockets, and those UDP
sockets on which connect has been used,
may use send or write
● sendto is used for those UDP sockets that
are not connected, and allows send-time
decision of where to send. In other words,
we can send to many different destinations
on a single UDP socket.

13

Unix Sockets API
Receiving Data

int recv(int s,
 void *buf, int len, int flags);
int recvfrom
 (int s, void *buf, int len, int flags,
 struct sockaddr *from,
 socklen_t *fromlen);
int read(int fd, void *buf, int count);

correspond to the sending operations, returning:
● the length received,
● 0 if (the OS knows that) the socket has been
closed, or
● -1 if there was an error.

14

Unix Sockets API
Receiving TCP Data

When calling recv on a TCP socket, we
may get in return
● the same number of bytes that were
sent in one send operation, or
● fewer bytes than were sent in one
send operation, or
● more bytes than were sent in one
send operation
It's up to your code to deal with this!

15

TCP Receive Loop

char buffer [BIG_ENOUGH];
int rcvd = 0;
while (rcvd < sizeof (buffer)) {
 int new_bytes = recv (s,
 buffer + rcvd,
 sizeof (buffer) - rcvd, 0);
 if (new_bytes <= 0)
 /* exit or return or break */
 /* new_bytes > 0 */
 rcvd += new_bytes;
 if (received_valid (buffer, rcvd)
 break;
}
process_data (buffer, rcvd);

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

