
 1

ICS 111
More about Methods

● Method design
● Stepwise refinement
● Method tracing
● Variable scope

 2

ICS 111
Re-using Methods

● Code reuse is good for programmer
efficiency and program correctness:
– reusing an existing method means we don't

have to write it
– an existing method is less likely to have

bugs than a newly-written method
● However, this is only possible if the

method is sufficiently general

 3

ICS 111
Method Generality

● There are many choices to be made when designing a
method:
– return type
– name
– parameters
– design of the code

● the return type is often dictated by the computation we
want the method to do

● the parameters may be flexible: some choices of
parameters may make the method more general

 4

ICS 111
Comparison of two Methods

public static void printHello() {

System.out.println(“Hello world”);

}

public static void printGreeting(String greeting, String to) {

System.out.println(greeting + “ “ + to);

}
● The second method can be reused for different greetings
● Making a method more general often leads to having more parameters

– but not always!
– more parameters make the method more complicated and harder to use

● Choice of parameters affects the generality of the method
● The name of the method has also changed to reflect its more general functionality

 5

ICS 111
Method Design

● The method must solve your current needs
● Shorter methods (methods with shorter code) are better

than longer methods
– It's just fine to call other methods from within a method body

● Ideally, methods are units of meaning
– when they are, they code in the caller is easy to read:
name = digitName(number / 100) + “ hundred”;

(example from the book, Section 5.7)
– This turns part of a number (such as 321) into a string, such as

“three hundred”

 6

ICS 111
Method Design:

Stepwise Refinement

● Sometimes it's obvious how to break
down a solution to a problem, by
combining solutions to smaller
problems

● when coding, each of the solutions to
the smaller problems can be a method

 7

ICS 111
Stepwise Refinement

● Doing an assignment includes:

1. Reading the assignment

2. Doing each of the programming problems

3. Turning in the assignment
● The method for doing step 2 is called more than once
● Now we can write the main method:

int numAssignment = 5;

int numProblems = readAssignment(numAssignment);

for (int i = 0; i < numProblems; i++) {

solution += doProgrammingProblem(numAssignment, i + 1);

}

submitAssignment(numAssignment, solution);

 8

ICS 111
Stepwise Refinement: Stubs

● Once the main problem has been subdivided into smaller, easier
problems, we can write the methods to solve the smaller problems

● It is a good idea to test the top-level code before writing these
lower-level methods

● If so, we can just define the lower-level method to do the minimum
that allows the top-level method to still work

● This bare-bones implementation is called a stub

public static String doProgrammingProblem

 (int assignmentNumber, int problemNumber) {

 return “solution to problem “ + problemNumber + “\n”;

}

 9

ICS 111
A real example

● One way to factor a number n is to divide it by
every number x < n by which it is divisible

● Printing the factors requires remembering (in a
variable) whether we have printed a factor before
– if this is the first factor, just print it
– otherwise, print “ * “ before the factor

● Both testing whether a number is divisible by
another number, and printing the factor, can be
delegated to other methods

 10

ICS 111
Code for Factoring

public static void printFactors (int n) {

 int factor = 2; // two is the first possible factor

 boolean firstPrint = true;

 System.out.println(n + “ = “); // print the number to be factored

 while (factor <= n) { // each loop, either increase factor, or make n smaller

 if (isDivisible(n, factor)) {

 printFactor(factor, firstPrint); // print the factor

 firstPrint = false; // we've printed one or more factors already

 n = n / factor; // make n smaller

 } else { // not divisible: maybe the next int is a factor

 factor++; // make factor bigger

 }
 }

 System.out.println(); // after the loop, end the line

}

● the two methods isDivisible and printFactor can initially be stubs while we test this code

 11

ICS 111
isDivisible and printFactor stubs

● public static boolean isDivisible (int n, int factor) {

 return true;

}

● public static void printFactor(int factor, boolean
firsttime) {

 System.out.print((factor + “/” + firstTime + “ “);

}

● now test the printFactors method:

10 = 2/true 2/false 2/false
● the factors are wrong, but indeed 10 can be divided by 2, three

times, before it is less than two

 12

ICS 111
isDivisible method

● We can use modulo to test if a number n is divisible by another
number factor

● If they are divisible, the remainder of the division should be zero

public static boolean isDivisible (int n, int factor) {

 return n % factor == 0;

}

● 10 = 2/true 5/false
● 100 = 2/true 2/false 5/false 5/false
● our printing isn't exactly what we want yet, but we can see that

the results are correct

 13

ICS 111
printFactor method

● printing is just a question of adding or not adding “ * “ before the factor

public static void printFactor(int factor, boolean firsttime) {

 System.out.print((firstTime ? “” : “ * “) + factor);

}

● and now, we can print the factors of any number!
● 2 = 2
● 10 = 2 * 5
● 100 = 2 * 2 * 5 * 5
● 33 = 3 * 11
● 31 = 31
● 30 = 2 * 3 * 5
● 12345 = 3 * 5 * 823

 14

ICS 111
Summary of Stepwise Refinement

● If we have the high-level view of how to solve a problem, we
can write the code for that high-level view

● Any components that we aren't ready to implement will initially
be stub methods

● Testing with the stubs can give us confidence that the code for
the high-level part is correct

● Once the main part is working for us, we go ahead and
implement each stub
– we test and correct any errors after implementing each stub

● Stepwise refinement makes it easier to identify any problems
early, so we know where to look for the solution

 15

ICS 111
Tracing Choices

● Suppose you are tracing this code:

if (isDivisible(n, factor)) {

 printFactor(factor, firstPrint); // print the factor

 firstPrint = false; // we've printed one or more factors already

 n = n / factor; // make n smaller

} else { // not divisible: maybe the next int is a factor

 factor++; // make factor bigger

}

● When you get to the first method call, what do you do?
– You can enter the method, and trace the code of the method body
– or, you can assume that the method does the right thing (return true or false, as appropriate) without

going into the details
● Both of these methods of tracing are useful:

– the first is useful for understanding how each method does what it does
– the second is more useful (and faster) in understanding the top-level code

 16

ICS 111
Tracing Individual Methods

● Treat parameters as you would
variables
– record their value, track these values when

they change
● on a return, record the value returned

 17

ICS 111
Variable Scope and Uniqueness

● We have seen that variables are in scope
from their definition to the end of the
enclosing block

● It is an error in Java to have two variables
with the same name and overlapping scope

● It is OK to have variables with the same
name as long as the scopes don't overlap

 18

ICS 111
Uniqueness Examples

for (int i = 0; i < 10; i++) {

for (int i = 77; i < 99; i++) {

● the second declaration of i is in the scope of the first and
the compiler will complain

● Variables with different scopes:

for (int i = 0; i < 10; i++) {

}

for (int i = 77; i < 99; i++) {

}

● the two scopes don't overlap

 19

ICS 111
Local and Global Variables

● variables in different methods can have the same name
● we say that variables are local to the method

– as far as scoping is concerned, method parameters like local
variables

● variables can also be declared outside methods: these are
global variables

● global variables can be very useful, but are harder to use
correctly, and for now you should not use global variables
– once you do use them, choose the name carefully so it doesn't

conflict with the names of other global variables

 20

Summary

● Carefully designed methods are more likely to be
reused

● In stepwise refinement, we create the high-level
code first, using stubs for the lower-level methods

● This gives us confidence that the high-level code
works, and that we have identified the correct
lower-level methods

● In tracing, we can either go into method execution,
or assume that methods do what we expect them
to do

● Variable names must be unique within the scope of
the variable
– it is a good idea to give variables the smallest scope

that still makes them useful

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

