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ICS 111
Nested Loops, Java Methods

● Nested Loops
● Simulations
● Java Methods



  2

ICS 111
Two-Dimensional Problems

● Many problems are best represented 
using multiple dimensions

● A simple example is a table, in which 
rows go left to right and columns run 
top down

● Spreadsheets are similar
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ICS 111
Multiplication Table

● With a multiplication table, the product 
of two numbers a and b is found at the 
intersection of row a and column b (or 
viceversa)

● Generally these multiplication tables 
show the products of all numbers 
between 1 and 10, or between 1 and 12
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ICS 111
Multiplication Table

 1:   1   2   3   4   5   6   7   8   9  10

 2:   2   4   6   8  10  12  14  16  18  20

 3:   3   6   9  12  15  18  21  24  27  30

 4:   4   8  12  16  20  24  28  32  36  40

 5:   5  10  15  20  25  30  35  40  45  50

 6:   6  12  18  24  30  36  42  48  54  60

 7:   7  14  21  28  35  42  49  56  63  70

 8:   8  16  24  32  40  48  56  64  72  80

 9:   9  18  27  36  45  54  63  72  81  90

10:  10  20  30  40  50  60  70  80  90 100
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Generating a Multiplication Table

● An outer loop prints each row
● An inner loop prints each value
● both are counting loops that go from 1 to 10 

(or 1 to 12)
● each for loop has its own variable: row, col
● the variable col, declared in the inner loop, is 

only accessible in the body of that inner loop
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Multiplication Table: Nested Loops

for (int row = 1; row <= 10; row++) {

  System.out.printf ("%2d:", row);

  for (int col = 1; col <= 10; col++) {

    System.out.printf ("%4d", row * col);

  }

  System.out.println();

}

● The first printf prints the row header, and could be omitted
● The second printf, in the inner loop, prints the product. 

– the largest product is 100, and
– %4d specifies 4 characters for each product (d specifies a decimal number), so
– the first character will always be a space

● The final println ends the row.
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Programs that Draw

● A window, or a screen, is a two-
dimensional area filled with picture 
elements, called pixels

● Filling an area in such a window often 
requires nested loops
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ICS 111
Printing a Calendar

Su Mo Tu We Th Fr Sa  

       1  2  3  4  5  

 6  7  8  9 10 11 12  

13 14 15 16 17 18 19  

20 21 22 23 24 25 26  

27 28 29 30           
● Easiest to have an outer loop print the weeks, and an inner 

loop print the days of the week
● Printing all the months in a year might have three nested 

loops!!!!
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ICS 111
Printing a Calendar

int weekdayOfFirst = ...; // 0, 1, 2, 3, 4, 5, or 6

int daysInMonth = ...;    // 28, 29, 30, or 31

for (int blank = 0; blank < weekdayOfFirst; blank++) {

  System.out.print ("   ");  // blanks for the days of last month

}

int date = 1;

for (int weekday = weekdayOfFirst; weekday < 7; weekday++) {

  System.out.printf ("%3d", date++);

}

System.out.println ();

while (date <= daysInMonth) {

  for (int weekday = 0; weekday < 7 && date <= daysInMonth; weekday++) {

    System.out.printf ("%3d", date++);

  }

  System.out.println ();

}
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Printing a Calendar: Alternative

int weekdayOfFirst = ...; // 0, 1, 2, 3, 4, 5, or 6

int daysInMonth = ...;    // 28, 29, 30, or 31

int date = 1 - weekdayOfFirst;

while (date <= daysInMonth) {

  for (int weekday = 0; weekday < 7 && date <= daysInMonth; weekday++) {

    if (date >= 1) {

      System.out.printf ("%3d", date++);

    } else {

      System.out.printf ("   ");

      date++;   // don't forget to increment date!

    }

  }

  System.out.println ();

}
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Simulations

● The world is complicated
● When we use a computer to simulate 

the real world, we have to simplify
● Instead of having real inputs, we can 

choose inputs at random in such a way 
that the random inputs statistically 
resemble real inputs
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ICS 111
Random Numbers

● Math.random() gives a double uniformly distributed between 0 
(included) and 1 (excluded)
double r = Math.random(); // 0 <= r < 1

● if I want a number between 1 and 10, I just multiply and add to 
give the right range:
double oneToTen = Math.random() * 9 + 1;

● these numbers are not truly random
● fair dice and fair coin tosses are random
● pseudo-random numbers are the result of a complicated 

calculation whose results are hard to predict
– unless you have all the inputs to that calculation
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Simulating a Large Shop

● A manager measures how long customers have to wait at 
the checkout

● The manager wonders how this would change with one 
more or one fewer cashier

● The average number of customers per day is known
● A program can simulate customers arriving at random times
● The range of times is chosen so the average matches the 

measured number of customers per day
● The simulation can then measure the wait time with 

different numbers of cashiers
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Java Methods

public class Hello {

  public static void main (String[] a) {

    System.out.println ("hello world");

  }

}

● main is a method in java
● Program execution starts with main
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Familiar Java Methods

We have seen many methods, particularly from the Math 
library: Math.round(), Math.pow(), Math.sqrt()

● We may call (or invoke) these methods because we want the 
results
– we want a value that the method computes

● These methods work like mathematical functions: the inputs to 
the method determine the result
– method inputs are known as parameters or arguments

● Or we may call a method because we want it to do something, 
i.e. have side effects: System.out.println()

● Some methods both have side effects and also return a result
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ICS 111
Calling Java Methods

● When we call a method, we provide the 
parameters

● After the method completes, the original code 
resumes execution
– we say that the method returns
– with or without a return value!

● We will now learn how to write methods
– again, this is familiar: think of the main method
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Writing Java Methods: Overview

● We often don't care how the code does what it does: we 
treat the method as a black box

● Of course, someone had to write the code!
● When creating a method, we have to consider what 

arguments it takes, and what result (if any) it returns
● We must choose a good name for the method

– the name should express what the method does
– in Java, method names use camelCase

● Well-designed methods help in writing well-structured 
programs
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Java Methods: Syntax

public static returnType methodName (arguments) {

  body of the method
}

● the return type can be void if the method doesn't return a value
● arguments are a comma-separated list of argumentType 

argumentName
● for example, the code for Math.pow begins with:
public static double pow (double base, double exponent) {

● some methods do not have public static
– these will be discussed when we start talking about Objects
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ICS 111
A complete Method

public static boolean isZero(long value) {

return (value == 0);

}

● This method returns true if its 
parameter is 0, and false otherwise
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return

public static long max(long a, long b) {

if (a < b) {

  return b;

}

return a;

}

● When return executes, it immediately ends execution of this method, 
and returns to the caller
– somewhat like break ends execution of a loop

● A method returning a value is required to have a return statement as its 
last statement
– in every executable branch

● All return values must be of the correct type
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Void Methods

public static void

     printTwice(String s) {

System.out.print(s);

System.out.println(s);

}

● A void method isn't required to have a 
return statement
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ICS 111
Void Methods and return

public static void printTwice(String s) {

if (s.length() == 0) {

// return to the caller, without returning a value

  return;

}

System.out.print(s);

System.out.println(s);

}

● When return executes, it immediately ends execution of 
this method, and returns to the caller

● somewhat like break ends execution of a loop or switch
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Method Parameters

● A method parameter is almost like a variable
● It is a variable initialized by the caller!
● It has a type and a value
● It is entirely local to the method:

– changing the value of the parameter does not 
change its value for the caller!

● We will see exceptions to this when we talk 
about Objects
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Locality of Parameters

● Modifying the value of a parameter does not affect the caller
● static void method m (int parm) {

  parm++;  // parm becomes 4

}

int x = 3;

m(x);

// now, still x == 3

● Still, methods that don't modify the values of their 
arguments are often clearer than methods that do
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Summary

● Nested loops are appropriate for tables and 
other two-dimensional problems

● Simulations are useful for predicting what 
will happen in the real world

● Java methods are building blocks of Java 
programs
– methods may or may not return a value
– methods may have zero or more arguments 

(parameters)
● You have used and created methods 

before, but now we begin to look at them 
more closely
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