
 1

ICS 111
Nested Loops, Java Methods

● Nested Loops
● Simulations
● Java Methods

 2

ICS 111
Two-Dimensional Problems

● Many problems are best represented
using multiple dimensions

● A simple example is a table, in which
rows go left to right and columns run
top down

● Spreadsheets are similar

 3

ICS 111
Multiplication Table

● With a multiplication table, the product
of two numbers a and b is found at the
intersection of row a and column b (or
viceversa)

● Generally these multiplication tables
show the products of all numbers
between 1 and 10, or between 1 and 12

 4

ICS 111
Multiplication Table

 1: 1 2 3 4 5 6 7 8 9 10

 2: 2 4 6 8 10 12 14 16 18 20

 3: 3 6 9 12 15 18 21 24 27 30

 4: 4 8 12 16 20 24 28 32 36 40

 5: 5 10 15 20 25 30 35 40 45 50

 6: 6 12 18 24 30 36 42 48 54 60

 7: 7 14 21 28 35 42 49 56 63 70

 8: 8 16 24 32 40 48 56 64 72 80

 9: 9 18 27 36 45 54 63 72 81 90

10: 10 20 30 40 50 60 70 80 90 100

 5

ICS 111
Generating a Multiplication Table

● An outer loop prints each row
● An inner loop prints each value
● both are counting loops that go from 1 to 10

(or 1 to 12)
● each for loop has its own variable: row, col
● the variable col, declared in the inner loop, is

only accessible in the body of that inner loop

 6

ICS 111
Multiplication Table: Nested Loops

for (int row = 1; row <= 10; row++) {

 System.out.printf ("%2d:", row);

 for (int col = 1; col <= 10; col++) {

 System.out.printf ("%4d", row * col);

 }

 System.out.println();

}

● The first printf prints the row header, and could be omitted
● The second printf, in the inner loop, prints the product.

– the largest product is 100, and
– %4d specifies 4 characters for each product (d specifies a decimal number), so
– the first character will always be a space

● The final println ends the row.

 7

ICS 111
Programs that Draw

● A window, or a screen, is a two-
dimensional area filled with picture
elements, called pixels

● Filling an area in such a window often
requires nested loops

 8

ICS 111
Printing a Calendar

Su Mo Tu We Th Fr Sa

 1 2 3 4 5

 6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30
● Easiest to have an outer loop print the weeks, and an inner

loop print the days of the week
● Printing all the months in a year might have three nested

loops!!!!

 9

ICS 111
Printing a Calendar

int weekdayOfFirst = ...; // 0, 1, 2, 3, 4, 5, or 6

int daysInMonth = ...; // 28, 29, 30, or 31

for (int blank = 0; blank < weekdayOfFirst; blank++) {

 System.out.print (" "); // blanks for the days of last month

}

int date = 1;

for (int weekday = weekdayOfFirst; weekday < 7; weekday++) {

 System.out.printf ("%3d", date++);

}

System.out.println ();

while (date <= daysInMonth) {

 for (int weekday = 0; weekday < 7 && date <= daysInMonth; weekday++) {

 System.out.printf ("%3d", date++);

 }

 System.out.println ();

}

 10

ICS 111
Printing a Calendar: Alternative

int weekdayOfFirst = ...; // 0, 1, 2, 3, 4, 5, or 6

int daysInMonth = ...; // 28, 29, 30, or 31

int date = 1 - weekdayOfFirst;

while (date <= daysInMonth) {

 for (int weekday = 0; weekday < 7 && date <= daysInMonth; weekday++) {

 if (date >= 1) {

 System.out.printf ("%3d", date++);

 } else {

 System.out.printf (" ");

 date++; // don't forget to increment date!

 }

 }

 System.out.println ();

}

 11

ICS 111
Simulations

● The world is complicated
● When we use a computer to simulate

the real world, we have to simplify
● Instead of having real inputs, we can

choose inputs at random in such a way
that the random inputs statistically
resemble real inputs

 12

ICS 111
Random Numbers

● Math.random() gives a double uniformly distributed between 0
(included) and 1 (excluded)
double r = Math.random(); // 0 <= r < 1

● if I want a number between 1 and 10, I just multiply and add to
give the right range:
double oneToTen = Math.random() * 9 + 1;

● these numbers are not truly random
● fair dice and fair coin tosses are random
● pseudo-random numbers are the result of a complicated

calculation whose results are hard to predict
– unless you have all the inputs to that calculation

 13

ICS 111
Simulating a Large Shop

● A manager measures how long customers have to wait at
the checkout

● The manager wonders how this would change with one
more or one fewer cashier

● The average number of customers per day is known
● A program can simulate customers arriving at random times
● The range of times is chosen so the average matches the

measured number of customers per day
● The simulation can then measure the wait time with

different numbers of cashiers

 14

ICS 111
Java Methods

public class Hello {

 public static void main (String[] a) {

 System.out.println ("hello world");

 }

}

● main is a method in java
● Program execution starts with main

 15

ICS 111
Familiar Java Methods

We have seen many methods, particularly from the Math
library: Math.round(), Math.pow(), Math.sqrt()

● We may call (or invoke) these methods because we want the
results
– we want a value that the method computes

● These methods work like mathematical functions: the inputs to
the method determine the result
– method inputs are known as parameters or arguments

● Or we may call a method because we want it to do something,
i.e. have side effects: System.out.println()

● Some methods both have side effects and also return a result

 16

ICS 111
Calling Java Methods

● When we call a method, we provide the
parameters

● After the method completes, the original code
resumes execution
– we say that the method returns
– with or without a return value!

● We will now learn how to write methods
– again, this is familiar: think of the main method

 17

ICS 111
Writing Java Methods: Overview

● We often don't care how the code does what it does: we
treat the method as a black box

● Of course, someone had to write the code!
● When creating a method, we have to consider what

arguments it takes, and what result (if any) it returns
● We must choose a good name for the method

– the name should express what the method does
– in Java, method names use camelCase

● Well-designed methods help in writing well-structured
programs

 18

ICS 111
Java Methods: Syntax

public static returnType methodName (arguments) {

 body of the method
}

● the return type can be void if the method doesn't return a value
● arguments are a comma-separated list of argumentType

argumentName
● for example, the code for Math.pow begins with:
public static double pow (double base, double exponent) {

● some methods do not have public static
– these will be discussed when we start talking about Objects

 19

ICS 111
A complete Method

public static boolean isZero(long value) {

return (value == 0);

}

● This method returns true if its
parameter is 0, and false otherwise

 20

ICS 111
return

public static long max(long a, long b) {

if (a < b) {

 return b;

}

return a;

}

● When return executes, it immediately ends execution of this method,
and returns to the caller
– somewhat like break ends execution of a loop

● A method returning a value is required to have a return statement as its
last statement
– in every executable branch

● All return values must be of the correct type

 21

ICS 111
Void Methods

public static void

 printTwice(String s) {

System.out.print(s);

System.out.println(s);

}

● A void method isn't required to have a
return statement

 22

ICS 111
Void Methods and return

public static void printTwice(String s) {

if (s.length() == 0) {

// return to the caller, without returning a value

 return;

}

System.out.print(s);

System.out.println(s);

}

● When return executes, it immediately ends execution of
this method, and returns to the caller

● somewhat like break ends execution of a loop or switch

 23

ICS 111
Method Parameters

● A method parameter is almost like a variable
● It is a variable initialized by the caller!
● It has a type and a value
● It is entirely local to the method:

– changing the value of the parameter does not
change its value for the caller!

● We will see exceptions to this when we talk
about Objects

 24

ICS 111
Locality of Parameters

● Modifying the value of a parameter does not affect the caller
● static void method m (int parm) {

 parm++; // parm becomes 4

}

int x = 3;

m(x);

// now, still x == 3

● Still, methods that don't modify the values of their
arguments are often clearer than methods that do

 25

Summary

● Nested loops are appropriate for tables and
other two-dimensional problems

● Simulations are useful for predicting what
will happen in the real world

● Java methods are building blocks of Java
programs
– methods may or may not return a value
– methods may have zero or more arguments

(parameters)
● You have used and created methods

before, but now we begin to look at them
more closely

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

