
 1

ICS 111
Conditional Statements

● Review: Sequence, Repetition,
Conditional
– and Parallel Execution, Program Structure

● Conditional Statements
– Conditional Expressions
– Switch Statements

● Syntax and Semantics

 2

Review:
Sequence, Repetition, Conditional
● The past few lectures were spent talking of

some basic elements of programming:
– print statements
– variable assignments
– string operations
– arithmetic operations

● These can be combined into larger programs
by sequence, repetition, and conditionals
– and parallel execution

 3

Review: Parallel Execution,
Program Structure

● Parallel Execution is important in the
real world to help our programs run fast
and be distributed across systems
– but we still won't look at it in ICS 111

● Program Structure is built-in to
everything we do as programmers. We
will see more of it throughout the
course, including in this lecture.

 4

Review: Sequence

● You've already seen and used sequences
● sequences are easy and natural, just

write statements one after another
● building blocks to be sequenced include:

– print statements
– variable assignments
– string and arithmetic operations
– loops, conditionals, and other sequences

 5

Review: Repetition

● We've talked about repetition (loops),
but haven't yet seen it in Java programs

● we will talk about it from September
16th

 6

Review: Conditional

● We have seen some examples of conditional
● Inside the “if” or “else” parts we have seen

print statements and variable assignments
● Anything could be inside the if:

– any basic statement
– another conditional
– a sequence of statements
– a loop

 7

Code Blocks: motivation

if (b)

 x = x + 1;

● this is a complete if statement
● the body of the if (and the body of the else, if present)

is a single statement
● loops are similar in that the body of a loop can be a

single statement
● usually, we want more than a single statement
● we can group a sequence of statements into a block

– bracketed by { curly braces }

 8

Code Blocks in conditionals

if (b) {

 x = x + 1;

}

● This is so common, that using braces has become a
standard, like camelCase

● This also helps to prevent errors: when you add a new
statement, the curly brace reminds you whether you
are in or out of the if or else part

● In ICS 111, you should always use braces for your if
statements
– and for the loops too!

 9

Code Blocks in conditionals

if (x > 0) {

 x = x + 1;

 System.out.println (“new x: “ + x);

} else {

 System.out.println (“x < 0: “ + x);

}

 10

Programming Languages:
Semantics and Syntax

● We write programs to specify a computation
– what we're telling a program to do is the program's
semantics

– for example, the semantics of x + 1 is that the value
computed is one more than the value stored in x

● The rules for how we can write programs are the
programming language syntax

● Compilers are very good at detecting syntax errors
– semantic errors are when the programmer tells the program to

do something other than what the programmer is trying to do
– most semantic errors cannot be detected by the compiler

 11

Syntax of Conditionals in Java

● keyword if, followed by:
● a boolean expression in parentheses, the condition
● the if statement(s) (also known as then statement(s))

– then is never written, and is not a Java keyword
● zero or more else-if statements, each beginning with

the keywords else if, then a boolean expression in
parentheses, then the else-if statement(s)

● possibly an else keyword followed by its else
statement(s)

 12

Semantics of Conditionals in Java

● The boolean expression is evaluated
● if the boolean expression evaluates to true, the

if statement (then statement) is executed
● otherwise, the boolean expressions for any

subsequent else-if parts are evaluated in
sequence. If the expression is true, the
corresponding statement is executed, and
evaluation of the entire conditional ends

● if a final else statement is reached, it is
executed

 13

Example of a conditional

if (price >= 10) {

buy immediately

} else if (price >= 20) {

think about it

} else if (price >= 30)

complain

} else {

buy two

}

● note the parentheses around the booleans
● what is wrong with this example?

– look for one syntax error and one semantic error
● inspired by section 3.3 in the book

 14

Syntax Error

if (price >= 10) {

buy immediately

} else if (price >= 20) {

think about it

} else if (price >= 30)

complain

} else {

buy two

}

● the second else-if is missing a brace
● this might be ok if complain is a single Java statement, but the

closing brace is present
● the compiler will let you know that there is an error

 15

Semantic Error

● We fix the syntax error by adding that brace, and the
program now compiles, but it is still wrong. What is
wrong?

if (price >= 10) {

buy immediately

} else if (price >= 20) {

think about it

} else if (price >= 30) {

complain

} else {

buy two

}

 16

Semantic Error

● The semantic error is that there is no way to enter
the two else-if statements. If the price is 10, 20, 30,
or more, we satisfy the condition for the if, and
ignore the rest

if (price >= 10) { // 20 > 10, 30 > 10

buy immediately

} ...

● It is usually a semantic error when there is no
possible way for the condition of an else-if to
evaluate to true

● Sometimes the compiler will detect this

 17

Semantic Error, Fix 1:
reorder the conditions

● By testing first for the highest price range, all the else-if
statements become relevant

if (price >= 30) {

complain

} else if (price >= 20) {

think about it

} else if (price >= 10) {

buy immediately

} else {

buy two

}

● We could also first test for the lowest price
if (price < 10) ... else if (price < 20) ... else if (price < 30) ... else ...

 18

Semantic Error, Fix 2:
have more detailed conditions

● We can also test for the price being in a range:

if ((price >= 10) && (price < 20)) {

buy immediately

} else if ((price >= 20) && (price < 30)) {

think about it

} else if (price >= 30) {

complain

} else {

buy two

}

 19

Conditional Expressions

● Java also has conditional expressions:

final int X = ((x < 0) ? -x : x);

● the condition comes first, then the ?
● next is the if/then expression, then :
● finally, the else expression

– unlike in conditional statements, the else expression is
required

● ?: is the conditional operator -- a two-part operator
● conditional statements are very common in code,

conditional expressions are much less common

 20

Another Example

if (taxStatus.equals (“single”)) {

if (income <= 2400) {

tax = income * 0.014;

} else {

tax = 34 + (income - 2400) * 0.032;

}

} else {

if (income < 4800) {

tax = income * 0.014;

} else {

tax = 67 + (income - 4800) * 0.032;

}

}

● inspired by section 3.4 in the book and the first two Hawaii tax rates
● some problems naturally work well with nested if statements!

 21

Switch Statement

● When testing a single value for equality against one of a number of values of
strings or basic types, you can use a switch statement

long powerOfTwo = Math.round(Math.pow(2, x));

switch (powerOfTwo) {

case 1: exp = 0; break;

case 2: exp = 1; break;

case 4: exp = 2; break;

case 8: exp = 3; break;

default: exp = -1; break

}

● break is required at the end of every case
– otherwise execution continues with the next case!

● if none of the cases match, the default statement (if any) is executed
● only one set of braces! The entire switch statement is considered a single block
● switch statements are not common in most code

– but are found from time to time

 22

Summary

● if statements provide conditionals in Java
– if statements rely on the boolean value of the condition to

decide what statements to execute
– else if and else allow us to consider multiple cases
– conditional expressions and switch statements can be used in

specific cases
● Syntax tells us how to write programs

– all programming languages have a formally-defined syntax
● Semantics tells us the meaning of syntactically correct

programs
– some programming languages have a formally-defined

semantics

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

