
 1

ICS 111
File Input and Output (I/O)

● Reading from Files
● Writing to Files
● Text input
● Data I/O
● Command-Line Arguments

 2

Computer Files

● After a program ends its run, all the values in the variables
are forgotten

● If desired, values can be stored persistently in files
– persistence means the value is remembered beyond the lifetime

of the program
– files can be copied and backed up to provide greater persistence
– backups are strongly recommended for any important files!

● Files have a name and possibly some data
● There are different types of data, including text data and

binary data

 3

Reading a Text File

● A variable of type File represents a file name that we can open for reading or writing

java.io.File readFrom = new java.io.File("input.txt");

java.util.Scanner in = new java.util.Scanner(readFrom);

while (in.hasNextLine()) {

 String s = in.nextLine();

 ...

}

in.close();

● The constructor for File creates a way for the Scanner to access the file name
● The constructor for Scanner opens the file, which must be closed before the end of the

program
– closing is essential for output files, but not for input files
– opening (for reading) a file that doesn't exist is an error and results in an exception

● Java doesn't care whether the file name ends with .txt:
– as long as the code uses Scanner, Java accesses the file as a text file

 4

File Names, File Chooser

● often we want to give the user a dialog box for choosing a file:
javax.swing.JFileChooser gives us such dialog boxes

● to ask the user to select a file:

JFileChooser c = new JFileChooser();

if (c.showOpenDialog() == JFileChooser.APPROVE_OPTION) {

 File selected = c.getSelectedFile();

 ...

}

● For an output file, use showSaveDialog
instead of showOpenDialog

● After these calls, we do have to check
whether the user selected a file

● Try this at home!!!

 5

Escapes, Backslashes

● If a file name in your code has backslashes, each must be
preceded by a second backslash:

readFrom = new java.io.File("c:\\hw\\input.txt");

● A backslash in Java strings is the escape character
– you are familiar with newlines being written "\n"
– an escape character gives special meaning to the next character
– the escape character must itself be escaped when we want it in a string

● Most programming languages have escape characters, allowing
us, for example, to include the double quote character inside a
string:

String answer = "they said \"yes\", all is well";

 6

Writing a Text File

● A writable text file is created (or if it already exists, is emptied) by
creating a variable of type java.io.PrintWriter:

PrintWriter outf = new PrintWriter("output.txt");

● Output files must be closed after we are done using them, or we may
lose data:

outf.close();

● In between creating and closing, we can use our usual print functions:

outf.println("This line goes into the file");

outf.printf("This line too! counter is %d\n", counter)

● In a given program, input files must be separate from output files,
otherwise great confusion may ensue

 7

Binary Data

● text data in a file is a sequence of bytes
● binary data in a file is a sequence of bytes
● in binary data, each byte may have any of the values between 0 and 255, inclusive

– in text data, bytes may only take the values of printable characters
● binary data bytes may or may not be displayable as printable characters

!"#*��$ %&#�

● it is OK to read or write a text file with operations for binary data
– it is not OK to read or write a binary file with text file operations!
– the results often won't make any sense

● in general, all we want to do with binary data is make copies or compare it for
equality

● there may be more specific uses for special kinds of binary data
● especially image and audio files

 8

Reading and Writing Binary Data

● A java.io.InputStream provides a read operation which returns
the next byte
– the byte is represented as a positive integer 0..255
– read returns -1 if the read operation has reached the end of the input
– InputStream has constructors for files and URLs

● There are several types of java.io.OutputStream
● for this class, the interesting one is java.io.FileOutputStream,

which has a write operation
– write takes a byte, represented as an integer in 0..255

● remember to close output streams!

 9

Constructors for Scanners

● We have seen how to construct a scanner from a file name:

Scanner in = new Scanner(new File("input.txt"));

● Scanners can also be set up to parse strings:

Scanner readString =

 new Scanner("this is the input");

● Or the contents of web pages:
java.net.URL url = new
java.net.URL("http://hawaii.edu");

Scanner readWebPage = new Scanner(url.openStream());

● The scanners work the same no matter what the source

 10

Java Scanner Methods

● String in.next() reads the next word (blank-terminated)
● String in.nextLine() reads the next line
● double in.nextDouble() reads the next floating point

value
● int in.nextInt() reads the next integer
● every nextX method has a matching boolean hasNextX

method that returns whether it is possible to read the
corresponding value
– in.hasNext(), in.hasNextLine(), in.hasNextDouble(),

in.hasNextInt()

 11

Java Delimiters

● String in.next() reads the next word
● a word is non-blank characters followed by a blank, newline, or the end of input

– in this case, blank and newline are delimiters
● characters that define the beginning or end of a word are known as delimiters
● you can change delimiters for a scanner
● useDelimiter(" yes ") uses the substring " yes " as the delimiter:

– given the input is "if we say yes I know yes is yes and no is no"
– in.next() will return the four strings "if we say", "I know", "is", "and no is no".

● in.useDelimiter("") clears the delimiters and tells the scanner's next method to
return strings that are a single character long
– containing the next character in the input

 12

Regular Expressions

● useDelimiter can be told to use groups of characters as delimiters
● [square brackets] identify groups of characters
● in.useDelimiter("[0-9]"); uses any digit as the delimiter
● in.useDelimiter("[.,;:]"); tells the scanner that in.next() should return all the

input up to the next one of these punctuation marks
● in.useDelimiter("[^a-zA-Z0-9]"); means to use as a delimiter any non-

alphanumeric character
– the initial ^ indicates a negation, so “use as delimiter any character that does not belong to the

character ranges in the brackets”
● the argument to useDelimiter is a regular expression

– regular expressions are a general way of capturing patterns in strings
– regular expressions are more general than discussed here
– regular expressions are used outside of Java in shell programming and in string matching
– regular expressions are of interest in the theory of programming languages: part of the syntax of

language definitiions is usually expressed as regular expressions

 13

Character Classes

● Several Java methods tell us whether a character is a digit, a letter, upper or lower case, etc

Character.isWhiteSpace(char c)

Character.isDigit(char c)

Character.isLetter(char c)

Character.isUpperCase(char c)

Character.isLowerCase(char c)
● In each case, these methods return a boolean that is true if the character belongs to that

group, and false otherwise
● Many more can be found at

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Character.html

● String.trim removes any initial or final blanks:
● String withBlanks = " Hello world ";
● String withoutBlanks = withBlanks.trim(); // withoutBlans is "Hello World"

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Character.html

 14

Parsing Numbers

● We can parse a string to an integer or a double
● However, the number must fill the entire string

(except for any initial or terminating blanks):
● Double.parseDouble("3.1415") is fine
● Double.parseDouble(" 3.14+3") is not
● If using a scanner, can test with hasNextInt() or

hasNextDouble() before calling nextInt() or
nextDouble()

 15

printf formats

● printf prints according to a format string
● % in the format string indicates a value taken from one of the later

arguments to printf:
– %s: print a string
– %d: print a decimal integer
– %f: print a floating point number such as 3.1
– %e: print a floating point number with the exponent, such as 3.1e+0
– %g: print a floating point number with the best of the preceding two

notations
– %x: print an integer in hexadecimal
– %%: print a % sign (there is no later argument corresponding to %%)
printf (“my name is %s: %d + %f is %f%%\n”, myName, 2, 3.0, 2.3);

 16

printf format width and alignment

● Between the % and the format character may be a number, which specifies
the format width (in characters)

● %3d, print an integer with one or two leading blanks if necessary
– examples: "1234", " 12", " 1"
– numbers that don't fit in the format width are still printed in their entirety

● %-3d, print an integer with one or two following blanks if necessary
– examples: "1234", "12 ", "1 "

● %03d, print an integer with one or two leading 0s if necessary
– examples: "1234", "012", "001"

● %5.2f, print a floating point number using (at least) 5 characters, with exactly
two digits after the decimal point
– examples: " 3.14", "139.00"

● %(5d, print negative numbers in (parentheses)

 17

Command-Line Arguments

● We have seen that the command-line arguments are
given to main in its array of strings parameter

● When an argument begins with a "-" character, it is
usually an option or a flag
– e.g. "-v" or "--verbose" to tell the program to print more

debugging information
● If argument order doesn't matter, we can process the

command-line arguments with an enhanced for loop:

for (String a: args) { ...

● Arguments are often file names

 18

File Names in
Command-Line Arguments

Arguments are often file names. Here is a simple program that just prints the contents of all files
named in its arguments:

public static void main(String[] args) {

 for (String a: args) {

 printFileContents(a);

 }

}

public static void printFileContents(String fileName) {

 java.io.File f = new java.io.File(fileName);

 java.util.Scanner in = new java.util.Scanner(f);

 while (in.hasNextLine()) {

 System.out.println(in.nextLine());

 }

}

● do this at home: try to run this program before going on to the next slide

 19

Exceptions and throws

● The code on the preceding slide won't compile, because creating a scanner from a file may cause an exception
called FileNotFoundException

● An exception is said to be thrown
– later we will see how to catch exceptions!

● For now, we can keep the compiler happy by simply declaring the exceptions that each method may throw

public static void main(String[] args) throws java.io.FileNotFoundException {

 for (String a: args) {

 printFileContents(a);

 }

}

public static void printFileContents(String fileName) throws java.io.FileNotFoundException {

 java.io.File f = new java.io.File(fileName);

 java.util.Scanner in = new java.util.Scanner(f);

 while (in.hasNextLine()) {

 System.out.println(in.nextLine());

 }

}

 20

Substitution Cipher

● A simple way to encrypt is to just choose a letter a fixed
distance away from the letter we are encrypting

● Caesar cipher: A -> D, B -> E, ... Z -> C
– “hello world” becomes “khoor zruog”
– decryption uses the same substitution table, backwards
– this is an easy cipher to break, so it is no longer seriously used

● since English has 26 letters, we can swap the two halves of the
alphabet: A -> M, B -> N, ... Z -> L
– this is “rot13”, where the letters are rotated through the alphabet by

13 positions
– then decryption is the same operation as encryption

 21

Summary

● This lecture expands on previous knowledge about
text input and output

● Reading from files and writing to files is
intentionally very similar to reading from the user
and printing to the display

● Scanners and parseInt/parseDouble provide many
ways of using user and file input, and printf
provides much flexibility for output

● It is easy to read and output files!
● Try it at home: read a web page from a web server

– maybe
http://www2.hawaii.edu/~esb/2020fall.ics111/oc
t12-transcript.txt

– output it to the screen, and also save it to a file.

http://www2.hawaii.edu/~esb/2020fall.ics111/oct12-transcript.txt
http://www2.hawaii.edu/~esb/2020fall.ics111/oct12-transcript.txt

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

